Követés
Kiran Vodrahalli
Kiran Vodrahalli
Research Scientist, Google DeepMind
E-mail megerősítve itt: google.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
34052023
PaLM 2 Technical Report
R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ...
arXiv preprint arXiv:2305.10403, 2023
16172023
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team
arXiv preprint arXiv:2403.05530v3, 2024
12932024
A Large Self-Annotated Corpus for Sarcasm
M Khodak, N Saunshi, K Vodrahalli
LREC 2018, 2017
2982017
Mapping between fMRI responses to movies and their natural language annotations
K Vodrahalli, PH Chen, Y Liang, C Baldassano, J Chen, E Yong, C Honey, ...
NeuroImage, 2017
1012017
A compressed sensing view of unsupervised text embeddings, bag-of-n-grams, and LSTMs
S Arora, M Khodak, N Saunshi, K Vodrahalli
International Conference on Learning Representations (ICLR) 2018, 2018
542018
Privacy accounting and quality control in the sage differentially private ML platform
M Lécuyer, R Spahn, K Vodrahalli, R Geambasu, D Hsu
Proceedings of the 27th ACM Symposium on Operating Systems Principles, 181-195, 2019
522019
The logical options framework
B Araki, X Li, K Vodrahalli, J DeCastro, M Fry, D Rus
International Conference on Machine Learning, 307-317, 2021
352021
Learning to Plan with Logical Automata
B Araki, K Vodrahalli, T Leech, CI Vasile, M Donahue, D Rus
Robotics: Systems and Science (RSS) 2019, 2019
262019
Is learning in games good for the learners?
W Brown, J Schneider, K Vodrahalli
Advances in Neural Information Processing Systems 36, 54228-54249, 2023
222023
Michelangelo: Long Context Evaluations Beyond Haystacks via Latent Structure Queries
K Vodrahalli, S Ontanon, N Tripuraneni, K Xu, S Jain, R Shivanna, J Hui, ...
arXiv preprint arXiv:2409.12640, 2024
92024
Deep Bayesian Nonparametric Learning of Rules and Plans from Demonstrations with a Learned Automaton Prior
B Araki, K Vodrahalli, T Leech, CI Vasile, M Donahue, D Rus
AAAI 2020, 2020
72020
Attribute-efficient learning of monomials over highly-correlated variables
A Andoni, R Dudeja, D Hsu, K Vodrahalli
Algorithmic Learning Theory (ALT) 2019, 127-161, 2019
62019
Nonlinear Initialization Methods for Low-Rank Neural Networks
K Vodrahalli, R Shivanna, M Sathiamoorthy, S Jain, E Chi
arXiv preprint arXiv:2202.00834, 2022
52022
Estimating Trending Topics on Twitter with Small Subsets of the Total Data
E Miller, K Vodrahalli, A Lee
Technical Report, 2015
52015
Depth gradient based tracking
KN Vodrahalli
US Patent 9,367,731, 2016
42016
The Platform Design Problem
C Papadimitriou, K Vodrahalli, M Yannakakis
WINE 2021, 2021
32021
Learning and planning with logical automata
B Araki, K Vodrahalli, T Leech, CI Vasile, M Donahue, D Rus
Autonomous Robots 45 (7), 1013-1028, 2021
22021
Online Learning with Bounded Recall
J Schneider, K Vodrahalli
ICML 2024, 2024
12024
Resource-Efficient Methods in Machine Learning
KN Vodrahalli
Columbia University, 2022
2022
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20