Suivre
Gurtej Kanwar
Titre
Citée par
Citée par
Année
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
MS Albergo, G Kanwar, PE Shanahan
Physical Review D 100 (3), 034515, 2019
2572019
Equivariant flow-based sampling for lattice gauge theory
G Kanwar, MS Albergo, D Boyda, K Cranmer, DC Hackett, S Racaniere, ...
Physical Review Letters 125 (12), 121601, 2020
2322020
Sampling using gauge equivariant flows
D Boyda, G Kanwar, S Racanière, DJ Rezende, MS Albergo, K Cranmer, ...
Physical Review D 103 (7), 074504, 2021
1612021
Normalizing flows on tori and spheres
DJ Rezende, G Papamakarios, S Racaniere, M Albergo, G Kanwar, ...
International Conference on Machine Learning, 8083-8092, 2020
1612020
Simit: A language for physical simulation
F Kjolstad, S Kamil, J Ragan-Kelley, DIW Levin, S Sueda, D Chen, ...
ACM Transactions on Graphics (TOG) 35 (2), 1-21, 2016
752016
Flow-based sampling for fermionic lattice field theories
MS Albergo, G Kanwar, S Racanière, DJ Rezende, JM Urban, D Boyda, ...
Physical Review D 104 (11), 114507, 2021
582021
Introduction to normalizing flows for lattice field theory
MS Albergo, D Boyda, DC Hackett, G Kanwar, K Cranmer, S Racanière, ...
arXiv preprint arXiv:2101.08176, 2021
482021
Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
R Abbott, MS Albergo, D Boyda, K Cranmer, DC Hackett, G Kanwar, ...
Physical Review D 106 (7), 074506, 2022
402022
Flow-based sampling for multimodal distributions in lattice field theory
DC Hackett, CC Hsieh, MS Albergo, D Boyda, JW Chen, KF Chen, ...
arXiv preprint arXiv:2107.00734, 2021
402021
Path integral contour deformations for observables in gauge theory
W Detmold, G Kanwar, H Lamm, ML Wagman, NC Warrington
Physical Review D 103 (9), 094517, 2021
392021
Path integral contour deformations for noisy observables
W Detmold, G Kanwar, ML Wagman, NC Warrington
Physical Review D 102 (1), 014514, 2020
312020
Flow-based sampling in the lattice Schwinger model at criticality
MS Albergo, D Boyda, K Cranmer, DC Hackett, G Kanwar, S Racanière, ...
Physical Review D 106 (1), 014514, 2022
302022
Applications of flow models to the generation of correlated lattice QCD ensembles
R Abbott, A Botev, D Boyda, DC Hackett, G Kanwar, S Racanière, ...
Physical Review D 109 (9), 094514, 2024
292024
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
K Cranmer, G Kanwar, S Racanière, DJ Rezende, PE Shanahan
Nature Reviews Physics, 1-10, 2023
262023
Sampling QCD field configurations with gauge-equivariant flow models
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
arXiv preprint arXiv:2208.03832, 2022
202022
Normalizing flows for lattice gauge theory in arbitrary space-time dimension
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
arXiv preprint arXiv:2305.02402, 2023
182023
Real-time lattice gauge theory actions: Unitarity, convergence, and path integral contour deformations
G Kanwar, ML Wagman
Physical Review D 104 (1), 014513, 2021
182021
Phase unwrapping and one-dimensional sign problems
W Detmold, G Kanwar, ML Wagman
Physical Review D 98 (7), 074511, 2018
182018
transition form factor and the hadronic light-by-light -pole contribution to the muon from lattice QCD
C Alexandrou, S Bacchio, S Burri, J Finkenrath, A Gasbarro, ...
Physical Review D 108 (5), 054509, 2023
112023
Machine learning and variational algorithms for lattice field theory
G Kanwar
Massachusetts Institute of Technology, 2021
112021
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20