Suivre
Zhaoming Qin (秦兆铭)
Zhaoming Qin (秦兆铭)
Adresse e-mail validée de epfl.ch - Page d'accueil
Titre
Citée par
Citée par
Année
Data-driven dynamical control for bottom-up energy Internet system
H Hua, Z Qin, N Dong, Y Qin, M Ye, Z Wang, X Chen, J Cao
IEEE Transactions on Sustainable Energy 13 (1), 315-327, 2021
1162021
Privacy preserving load control of residential microgrid via deep reinforcement learning
Z Qin, D Liu, H Hua, J Cao
IEEE Transactions on Smart Grid 12 (5), 4079-4089, 2021
812021
Incremental incentive mechanism design for diversified consumers in demand response
D Liu, Z Qin, H Hua, Y Ding, J Cao
Applied Energy 329, 120240, 2023
372023
Demand-side joint electricity and carbon trading mechanism
H Hua, X Chen, L Gan, J Sun, N Dong, D Liu, Z Qin, K Li, S Hu
IEEE Transactions on Industrial Cyber-Physical Systems, 2023
222023
Optimal electricity trading strategy for a household microgrid
Z Qin, H Hua, H Liang, R Herzallah, Y Zhou, J Cao
2020 IEEE 16th International Conference on Control & Automation (ICCA), 1308 …, 2020
142020
Distributed power dispatching solution for a future economic and environment-friendly energy internet
Y Li, Z Qin, F Zhang, Y Qin, H Hua, J Cao
Proceedings of the 2020 The 9th International Conference on Informatics …, 2020
52020
Does Explicit Prediction Matter in Deep Reinforcement Learning-Based Energy Management?
Z Qin, H Zhang, Y Zhao, H Xie, J Cao
2021 IEEE International Conference on Energy Internet (ICEI), 2021
32021
Stochastic distributed control for frequency regulation in energy Internet: An ADMM approach
G Zhang, Y Qin, Y Li, H Hua, Z Qin, J Cao
2019 9th International Conference on Power and Energy Systems (ICPES), 1-6, 2019
32019
Data-Driven Output Feedback Control Based on Behavioral Approach
Z Qin, A Karimi
2024 American Control Conference (ACC), 3954-3959, 2024
12024
Scalable Multi-Agent Reinforcement Learning for Residential Load Scheduling Under Data Governance
Z Qin, N Dong, D Liu, Z Wang, J Cao
IEEE Transactions on Industrial Cyber-Physical Systems, 2024
2024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–10