Suivre
Alessandro Rudi
Alessandro Rudi
INRIA - École Normale Supérieure
Adresse e-mail validée de inria.fr - Page d'accueil
Titre
Citée par
Citée par
Année
Generalization Properties of Learning with Random Features
A Rudi, L Rosasco
Advances in Neural Information Processing Systems, 2017
3932017
Less is More: Nyström Computational Regularization
A Rudi, R Camoriano, L Rosasco
Advances in Neural Information Processing Systems (NIPS) 2015, 2015
3592015
Falkon: An optimal large scale kernel method
A Rudi, L Carratino, L Rosasco
Advances in neural information processing systems 30, 2017
2362017
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
G Luise, A Rudi, M Pontil, C Ciliberto
Advances in Neural Information Processing Systems, 2018
1462018
Kernel methods through the roof: handling billions of points efficiently
G Meanti, L Carratino, L Rosasco, A Rudi
Advances in Neural Information Processing Systems 33, 14410-14422, 2020
1252020
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
L Pillaud-Vivien, A Rudi, F Bach
Advances in Neural Information Processing Systems, 2018
1112018
Massively scalable Sinkhorn distances via the Nyström method
J Altschuler, F Bach, A Rudi, J Niles-Weed
Advances in neural information processing systems 32, 2019
1072019
Optimal rates for spectral algorithms with least-squares regression over Hilbert spaces
J Lin, A Rudi, L Rosasco, V Cevher
Applied and Computational Harmonic Analysis 48 (3), 868-890, 2020
1052020
On fast leverage score sampling and optimal learning
A Rudi, D Calandriello, L Carratino, L Rosasco
Advances in Neural Information Processing Systems 31, 2018
1052018
Learning with SGD and Random Features
L Carratino, A Rudi, L Rosasco
Advances in Neural Information Processing Systems, 2018
882018
A consistent regularization approach for structured prediction
C Ciliberto, L Rosasco, A Rudi
Advances in neural information processing systems 29, 2016
852016
Beyond least-squares: Fast rates for regularized empirical risk minimization through self-concordance
U Marteau-Ferey, D Ostrovskii, F Bach, A Rudi
Conference on learning theory, 2294-2340, 2019
722019
A general method for the point of regard estimation in 3D space
F Pirri, M Pizzoli, A Rudi
CVPR 2011, 921-928, 2011
672011
Non-parametric models for non-negative functions
U Marteau-Ferey, F Bach, A Rudi
Advances in neural information processing systems 33, 12816-12826, 2020
522020
A general framework for consistent structured prediction with implicit loss embeddings
C Ciliberto, L Rosasco, A Rudi
Journal of Machine Learning Research 21 (98), 1-67, 2020
522020
Structured prediction with partial labelling through the infimum loss
V Cabannnes, A Rudi, F Bach
International Conference on Machine Learning, 1230-1239, 2020
502020
Finding global minima via kernel approximations
A Rudi, U Marteau-Ferey, F Bach
Mathematical Programming, 1-82, 2024
472024
A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation
A Vacher, B Muzellec, A Rudi, F Bach, FX Vialard
arXiv preprint arXiv:2101.05380, 2021
442021
Globally convergent newton methods for ill-conditioned generalized self-concordant losses
U Marteau-Ferey, F Bach, A Rudi
Advances in Neural Information Processing Systems 32, 2019
442019
NYTRO: When Subsampling Meets Early Stopping
T Angles, R Camoriano, A Rudi, L Rosasco
arXiv preprint arXiv:1510.05684, 2015
41*2015
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20