Seuraa
Kun Wang
Kun Wang
Postdoctoral Research Associate, Los Alamos National Laboratory
Vahvistettu sähköpostiosoite verkkotunnuksessa columbia.edu
Nimike
Viittaukset
Viittaukset
Vuosi
A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning
K Wang, WC Sun
Computer Methods in Applied Mechanics and Engineering 334, 337-380, 2018
3342018
Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning
K Wang, WC Sun
Computer Methods in Applied Mechanics and Engineering 346, 216-241, 2019
1422019
SO (3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials
Y Heider, K Wang, WC Sun
Computer Methods in Applied Mechanics and Engineering 363, 112875, 2020
1252020
A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain
K Wang, WC Sun
Computer Methods in Applied Mechanics and Engineering 304, 546-583, 2016
892016
A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation
K Wang, WC Sun, Q Du
Computational Mechanics 64, 467-499, 2019
762019
An updated Lagrangian LBM–DEM–FEM coupling model for dual-permeability fissured porous media with embedded discontinuities
K Wang, WC Sun
Computer Methods in Applied Mechanics and Engineering 344, 276-305, 2019
632019
DNN2: A hyper-parameter reinforcement learning game for self-design of neural network based elasto-plastic constitutive descriptions
A Fuchs, Y Heider, K Wang, WC Sun, M Kaliske
Computers & Structures 249, 106505, 2021
622021
Predicting fault slip via transfer learning
K Wang, CW Johnson, KC Bennett, PA Johnson
Nature Communications 12 (1), 7319, 2021
472021
Identifying material parameters for a micro-polar plasticity model via X-ray micro-computed tomographic (CT) images: lessons learned from the curve-fitting exercises
K Wang, WC Sun, S Salager, SH Na, G Khaddour
International Journal for Multiscale Computational Engineering 14 (4), 2016
43*2016
A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media
K Wang, Y Chen, M Mehana, N Lubbers, KC Bennett, Q Kang, ...
Journal of Computational Physics 443, 110526, 2021
412021
A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media
K Wang, WC Sun
Computer Methods in Applied Mechanics and Engineering 318, 1-32, 2017
412017
Anisotropy of a tensorial Bishop’s coefficient for wetted granular materials
K Wang, WC Sun
Journal of Engineering Mechanics 143 (3), B4015004, 2017
402017
A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks
K Wang, WC Sun, Q Du
Computer Methods in Applied Mechanics and Engineering 373, 113514, 2021
292021
Predicting future laboratory fault friction through deep learning transformer models
K Wang, CW Johnson, KC Bennett, PA Johnson
Geophysical Research Letters, e2022GL098233, 2022
282022
Open-source support toward validating and falsifying discrete mechanics models using synthetic granular materials—Part I: Experimental tests with particles manufactured by a …
R Gupta, S Salager, K Wang, WC Sun
Acta Geotechnica 14, 923-937, 2019
282019
Efficient and generalizable nested Fourier-DeepONet for three-dimensional geological carbon sequestration
JE Lee, M Zhu, Z Xi, K Wang, YO Yuan, L Lu
Engineering Applications of Computational Fluid Mechanics 18 (1), 2435457, 2024
32024
Automatic speech recognition predicts contemporaneous earthquake fault displacement
CW Johnson, K Wang, PA Johnson
Nature Communications 16 (1), 1069, 2025
2025
From multiscale modeling to metamodeling of geomechanics problems
K Wang
Civil Engineering and Engineering Mechanics, Columbia University, 2019
2019
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–18