Seguir
Andrew Gordon Wilson
Título
Citado por
Citado por
Año
Averaging weights leads to wider optima and better generalization
P Izmailov, D Podoprikhin, T Garipov, D Vetrov, AG Wilson
Uncertainty in Artificial Intelligence (UAI), 2018
17372018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
JR Gardner, G Pleiss, D Bindel, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems (NIPS), 2018
13502018
Deep kernel learning
AG Wilson, Z Hu, R Salakhutdinov, EP Xing
Artificial Intelligence and Statistics (AISTATS), 2016
10612016
BoTorch: A framework for efficient Monte-Carlo Bayesian optimization
M Balandat, B Karrer, D Jiang, S Daulton, B Letham, AG Wilson, E Bakshy
Advances in neural information processing systems 33, 21524-21538, 2020
991*2020
A simple baseline for Bayesian uncertainty in deep learning
W Maddox, T Garipov, P Izmailov, D Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
9192019
Gaussian process kernels for pattern discovery and extrapolation
AG Wilson, RP Adams
Proceedings of the 30th International Conference on Machine Learning (ICML …, 2013
8302013
Loss surfaces, mode connectivity, and fast ensembling of DNNs
T Garipov, P Izmailov, D Podoprikhin, DP Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NIPS), 2018
7742018
Bayesian deep learning and a probabilistic perspective of generalization
AG Wilson, P Izmailov
Advances in Neural Information Processing Systems (NeurIPS), 2020
7462020
Simple black-box adversarial attacks
C Guo, JR Gardner, Y You, AG Wilson, KQ Weinberger
International Conference on Machine Learning (ICML), 2019
6472019
Kernel interpolation for scalable structured Gaussian processes (KISS-GP)
AG Wilson, H Nickisch
Proceedings of the 32nd International Conference on Machine Learning (ICML …, 2015
6342015
What Are Bayesian Neural Network Posteriors Really Like?
P Izmailov, S Vikram, MD Hoffman, AG Wilson
International Conference on Machine Learning, 2021
4232021
Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data
M Finzi, S Stanton, P Izmailov, AG Wilson
International Conference on Machine Learning (ICML), 2020
3382020
Stochastic variational deep kernel learning
AG Wilson, Z Hu, RR Salakhutdinov, EP Xing
Advances in Neural Information Processing Systems (NIPS) 29, 2586-2594, 2016
3302016
Cyclical stochastic gradient MCMC for Bayesian deep learning
R Zhang, C Li, J Zhang, C Chen, AG Wilson
International Conference on Learning Representations (ICLR), 2019
3202019
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
B Athiwaratkun, M Finzi, P Izmailov, AG Wilson
International Conference on Learning Representations (ICLR), 2019
306*2019
Student-t processes as alternatives to Gaussian processes
A Shah, AG Wilson, Z Ghahramani
Artificial Intelligence and Statistics, 877-885, 2014
2842014
Why normalizing flows fail to detect out-of-distribution data
P Kirichenko, P Izmailov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2020
2822020
Exact Gaussian processes on a million data points
KA Wang, G Pleiss, JR Gardner, S Tyree, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
2812019
Bayesian optimization with gradients
J Wu, M Poloczek, AG Wilson, PI Frazier
Advances in Neural Information Processing Systems (NIPS) 30, 2017
2812017
Last layer re-training is sufficient for robustness to spurious correlations
P Kirichenko, P Izmailov, AG Wilson
arXiv preprint arXiv:2204.02937, 2022
2722022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20