Seguir
Zachary Nado
Zachary Nado
Google Brain
Dirección de correo verificada de google.com - Página principal
Título
Citado por
Citado por
Año
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
20702023
Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift
Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, J Dillon, ...
Advances in neural information processing systems 32, 2019
18942019
Palm 2 technical report
R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ...
arXiv preprint arXiv:2305.10403, 2023
14002023
Underspecification presents challenges for credibility in modern machine learning
A D'Amour, K Heller, D Moldovan, B Adlam, B Alipanahi, A Beutel, ...
Journal of Machine Learning Research 23 (226), 1-61, 2022
7882022
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, 2024
6142024
On empirical comparisons of optimizers for deep learning
D Choi
arXiv preprint arXiv:1910.05446, 2019
3872019
Evaluating prediction-time batch normalization for robustness under covariate shift
Z Nado, S Padhy, D Sculley, A D'Amour, B Lakshminarayanan, J Snoek
arXiv preprint arXiv:2006.10963, 2020
2352020
Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic model
G Zhang, L Li, Z Nado, J Martens, S Sachdeva, G Dahl, C Shallue, ...
Advances in neural information processing systems 32, 2019
1492019
Plex: Towards reliability using pretrained large model extensions
D Tran, J Liu, MW Dusenberry, D Phan, M Collier, J Ren, K Han, Z Wang, ...
arXiv preprint arXiv:2207.07411, 2022
1132022
Uncertainty baselines: Benchmarks for uncertainty & robustness in deep learning
Z Nado, N Band, M Collier, J Djolonga, MW Dusenberry, S Farquhar, ...
arXiv preprint arXiv:2106.04015, 2021
1112021
A loss curvature perspective on training instabilities of deep learning models
J Gilmer, B Ghorbani, A Garg, S Kudugunta, B Neyshabur, D Cardoze, ...
International Conference on Learning Representations, 2022
71*2022
Benchmarking bayesian deep learning on diabetic retinopathy detection tasks
N Band, TGJ Rudner, Q Feng, A Filos, Z Nado, MW Dusenberry, G Jerfel, ...
arXiv preprint arXiv:2211.12717, 2022
542022
PaLM 2 Technical Report; 2023
R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ...
arXiv preprint arXiv:2305.10403, 2023
502023
AutoGraph: Imperative-style coding with graph-based performance
D Moldovan, JM Decker, F Wang, AA Johnson, BK Lee, Z Nado, D Sculley, ...
arXiv preprint arXiv:1810.08061, 2018
502018
Adaptive gradient methods at the edge of stability
JM Cohen, B Ghorbani, S Krishnan, N Agarwal, S Medapati, M Badura, ...
arXiv preprint arXiv:2207.14484, 2022
492022
Revisiting one-vs-all classifiers for predictive uncertainty and out-of-distribution detection in neural networks
S Padhy, Z Nado, J Ren, J Liu, J Snoek, B Lakshminarayanan
arXiv preprint arXiv:2007.05134, 2020
482020
A simple approach to improve single-model deep uncertainty via distance-awareness
JZ Liu, S Padhy, J Ren, Z Lin, Y Wen, G Jerfel, Z Nado, J Snoek, D Tran, ...
Journal of Machine Learning Research 24 (42), 1-63, 2023
462023
A large batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes
Z Nado, JM Gilmer, CJ Shallue, R Anil, GE Dahl
arXiv preprint arXiv:2102.06356, 2021
422021
Pre-trained Gaussian processes for Bayesian optimization
Z Wang, GE Dahl, K Swersky, C Lee, Z Nado, J Gilmer, J Snoek, ...
Journal of Machine Learning Research 25 (212), 1-83, 2024
312024
Benchmarking neural network training algorithms
GE Dahl, F Schneider, Z Nado, N Agarwal, CS Sastry, P Hennig, ...
arXiv preprint arXiv:2306.07179, 2023
182023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20