Seguir
Ludovico Nista
Ludovico Nista
RWTH Aachen University, von Karman Institute for Fluid Dynamics
Dirección de correo verificada de itv.rwth-aachen.de - Página principal
Título
Citado por
Citado por
Año
Investigation of the generalization capability of a generative adversarial network for large eddy simulation of turbulent premixed reacting flows
L Nista, CDK Schumann, T Grenga, A Attili, H Pitsch
Proceedings of the Combustion Institute 39 (4), 5279-5288, 2023
192023
Numerical investigation of the STRATOFLY MR3 propulsive nozzle during supersonic to hypersonic transition
L Nista, BH Saracoglu
AIAA Propulsion and Energy 2019 Forum, 3843, 2019
72019
The influence of adversarial training on turbulence closure modeling
L Nista, CKD Schumann, G Scialabba, T Grenga, A Attili, H Pitsch
AIAA SCITECH 2022 Forum, 0185, 2022
62022
Turbulent mixing predictive model with physics-based Generative Adversarial Network
L Nista, C Schumann, T Grenga, AN Karimi, G Scialabba, M Bode, A Attili, ...
10th European combustion meeting, 460-465, 2021
62021
Investigation of the extrapolation performance of machine learning models for les of turbulent premixed combustion
A Attili, N Sorace, L Nista, C Schumann, A Karimi, G Scialabba, T Grenga, ...
Proceedings European combustion meeting, 349-354, 2021
62021
Predictive Data-Driven Model Based on Generative Adversarial Network for Premixed Turbulence-Combustion Regimes
T Grenga, L Nista, C Schumann, A Karimi, G Scialabba, A Attili, H Pitsch
Combustion Science and Technology 195 (15), 3923–3946, 2022
42022
Influence of adversarial training on super-resolution turbulence reconstruction
L Nista, CDK Schumann, M Bode, T Grenga, JF MacArt, A Attili, H Pitsch
Physical Review Fluids 9 (6), 064601, 2024
32024
A Detailed Combustion Solver for Detonation Engines Simulations
L Nista, BH Saracoglu, AC Ispir
AIAA Scitech 2019 Forum, 2250, 2019
32019
Development of a robust solver to model the flow inside the engines for high-speed propulsion
L Nista, BH Saracoglu
MATEC Web of Conferences 304, 03013, 2019
22019
LES models for turbulent hydrogen flames with convolutional neural networks
A Attili, M Jansen, N Sorace, M Bruce, T Grenga, L Nista, L Berger, ...
Associazione Sezione Italiana Del Combustion Institute, 1-6, 2023
12023
Predictive data driven turbulence-combustion model through Super Resolution Generative Adversarial Network
T Grenga, L Nista, C Schumann, AN Karimi, G Scialabba, M Bode, A Attili, ...
10th European combustion meeting, 426-431, 2021
12021
Performance evaluations of the stratofly mr3 propulsive nozzle at supersonic speeds
A Ozden, L Nista, BH Saracoglu
AIAA Propulsion and Energy 2020 Forum, 3716, 2020
12020
A Posteriori Untersuchung von CNNs zur Modellierung von Wasserstoffverbrennung
JV Vanvinckenroye, L Nista, F Orland, MS Müller, H Pitsch
Lehrstuhl für Hochleistungsrechnen (Informatik 12), 2024
2024
Homogeneous isotropic turbulence database for training super-resolution data-driven turbulence closure models
L Nista, CDK Schumann, M Vivenzo, F Fröde, T Grenga, JF MacArt, A Attili, ...
Lehrstuhl und Institut für Technische Verbrennung, 2024
2024
Detailed Chemistry Investigation of Hydrogen and Hydrocarbon Based Fuel Mixture for Detonation Engine
AC Ispir, L Nista, B Saracoglu, T Magin
AIAA Scitech 2019 Forum, 1502, 2019
2019
Parallel Implementation and Performance of Super-Resolution Generative Adversarial Network Turbulence Models for Large-Eddy Simulation
L Nista, CDK Schumann, P Petkov, V Pavlov, T Grenga, JF MacArt, A Attili, ...
Available at SSRN 4938662, 0
Development of a reacting flow solver to model the combustion of hydrocarbons fuels in detonation engines
L Nista
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–17