Seguir
Carl Julius Martensen
Carl Julius Martensen
Dirección de correo verificada de ovgu.de
Título
Citado por
Citado por
Año
Universal differential equations for scientific machine learning
C Rackauckas, Y Ma, J Martensen, C Warner, K Zubov, R Supekar, ...
arXiv preprint arXiv:2001.04385, 2020
8632020
Model Simplification For Dynamic Control of Series-Parallel Hybrid Robots - A Representative Study on the Effects of Neglected Dynamics
FK Shivesh Kumar, Julius Martensen, Andreas Mueller
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2019), 2019
152019
Selection of decoupling control methods suited for automated design for uncertain TITO processes
M Noeding, J Martensen, N Lemke, W Tegethoff, J Koehler
2018 IEEE 14th International Conference on Control and Automation (ICCA …, 2018
112018
Towards Machine Learning of Power-2-Methanol Processes
CJ Martensen, C Plate, T Keßler, C Kunde, L Kaps, A Kienle, ...
Computer Aided Chemical Engineering 52, 561-568, 2023
42023
Symbolic-numeric integration of univariate expressions based on sparse regression
S Iravanian, CJ Martensen, A Cheli, S Gowda, A Jain, Y Ma, ...
ACM Communications in Computer Algebra 56 (2), 84-87, 2022
32022
Two degrees of freedom control of a multistage power-to-methanol reactor
T Keßler, C Plate, J Behrens, CJ Martensen, J Leipold, L Kaps, ...
Computers & Chemical Engineering 192, 108893, 2025
12025
Optimal experimental design for universal differential equations
C Plate, CJ Martensen, S Sager
arXiv preprint arXiv:2408.07143, 2024
12024
DynamicOED. jl: A Julia package for solving optimum experimental design problems
CJ Martensen, C Plate, S Sager
Journal of Open Source Software 9 (98), 6605, 2024
12024
models from data useable in pharmacometrics.
CJ Martensen, N Korsbo, V Ivaturi, S Sager
Training 1490, 705.0, 2032
2032
Optimal Experiments for Hybrid Modeling of Methanol Synthesis Kinetics
L Kaps, J Leipold, C Plate, CJ Martensen, W Kortuz, ...
2025
Data-Driven Discovery of Feedback Mechanisms in Acute Myeloid Leukaemia: Alternatives to classical models using Deep Nonlinear Mixed Effect modeling and Symbolic Regression
CJ Martensen, N Korsbo, V Ivaturi, S Sager
bioRxiv, 2024.06. 17.599366, 2024
2024
Data driven modeling in Julia
CJ Martensen
2022 DigiWell Julia Seminar at the University of Southeastern Norway, 2022
2022
Neural Network Surrogates and Symbolic Regression for System Estimation
CJ Martensen, C Rackauckas
SIAM Conference on Applications of Dynamical Systems (DS21), 2021
2021
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–13