Seguir
Jingchen (Monika) Hu
Título
Citado por
Citado por
Año
Disclosure risk evaluation for fully synthetic categorical data
J Hu, JP Reiter, Q Wang
International Conference on Privacy in Statistical Databases, 185-199, 2014
702014
Probability and Bayesian Modeling
J Albert, J Hu
Chapman and Hall/CRC, 2019
592019
Dirichlet process mixture models for modeling and generating synthetic versions of nested categorical data
J Hu, JP Reiter, Q Wang
Bayesian Analysis 13 (1), 183-200, 2018
592018
Bayesian estimation of attribute and identification disclosure risks in synthetic data
J Hu
Transactions of Data Privacy 12 (1), 61-89, 2019
462019
Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros
D Manrique‐Vallier, J Hu
Journal of the Royal Statistical Society: Series A (Statistics in Society …, 2018
252018
Synthesizing geocodes to facilitate access to detailed geographical information in large scale administrative data
J Drechsler, J Hu
Journal of Survey Statistics and Methodology 9 (3), 523-548, 2021
232021
Bayesian pseudo posterior mechanism under asymptotic differential privacy
TD Savitsky, MR Williams, J Hu
Journal of Machine Learning Research 23 (55), 1-37, 2022
17*2022
A Bayesian Statistics Course for Undergraduates: Bayesian Thinking, Computing, and Research
J Hu
Journal of Statistics Education 28 (3), 229-235, 2020
172020
The current state of undergraduate Bayesian education and recommendations for the future
M Dogucu, J Hu
The American Statistician 76 (4), 405-413, 2022
142022
Bayesian Data Synthesis and Disclosure Risk Quantification: An Application to the Consumer Expenditure Surveys
J Hu, TD Savitsky
Transactions of Data Privacy 16 (2), 83-121, 2023
13*2023
Risk-efficient Bayesian pseudo posterior data synthesis for privacy protection
J Hu, TD Savitsky, MR Williams
Journal of Survey Statistics and Methodology 10 (5), 1370-1399, 2022
132022
Identification Risks Evaluation of Partially Synthetic Data with the IdentificationRiskCalculation R Package
R Hornby, J Hu
Transactions of Data Privacy 14 (1), 37-52, 2021
13*2021
The Quasi-Multinomial Synthesizer for Categorical Data
J Hu, N Hoshino
International Conference on Privacy in Statistical Databases, 75-91, 2018
132018
Private tabular survey data products through synthetic microdata generation
J Hu, TD Savitsky, MR Williams
Journal of Survey Statistics and Methodology 10 (3), 720-752, 2022
122022
Bayesian Computing in the Undergraduate Statistics Curriculum
J Albert, J Hu
Journal of Statistics Education 28 (3), 236-247, 2020
112020
Teaching an Undergraduate Course in Bayesian Statistics: A Panel Discussion
A Johnson, C Rundel, J Hu, K Ross, A Rossman
Journal of Statistics Education 28 (3), 251-261, 2020
112020
Multiple imputation and synthetic data generation with the R package NPBayesImputeCat
J Hu, O Akande, Q Wang
The R Journal 13 (2), 90-110, 2021
102021
Are independent parameter draws necessary for multiple imputation?
J Hu, R Mitra, J Reiter
The American Statistician 67 (3), 143-149, 2013
82013
NPBayesImpute: Non-Parametric Bayesian Multiple Imputation for Categorical Data
Q Wang, D Manrique-Vallier, JP Reiter, J Hu
R package version 0.6, 2016
72016
Advancing microdata privacy protection: A review of synthetic data methods
J Hu, CMK Bowen
Wiley Interdisciplinary Reviews: Computational Statistics 16 (1), e1636, 2024
62024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20