Seguir
Ruiming Tang
Título
Citado por
Citado por
Año
DeepFM: a factorization-machine based neural network for CTR prediction
H Guo, R Tang, Y Ye, Z Li, X He
arXiv preprint arXiv:1703.04247, 2017
30462017
Product-based neural networks for user response prediction over multi-field categorical data
Y Qu, B Fang, W Zhang, R Tang, M Niu, H Guo, Y Yu, X He
ACM Transactions on Information Systems (TOIS) 37 (1), 1-35, 2018
2342018
Autofis: Automatic feature interaction selection in factorization models for click-through rate prediction
B Liu, C Zhu, G Li, W Zhang, J Lai, R Tang, X He, Z Li, Y Yu
proceedings of the 26th ACM SIGKDD international conference on knowledge …, 2020
1972020
Interactive recommender system via knowledge graph-enhanced reinforcement learning
S Zhou, X Dai, H Chen, W Zhang, K Ren, R Tang, X He, Y Yu
Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020
1742020
Neighbor interaction aware graph convolution networks for recommendation
J Sun, Y Zhang, W Guo, H Guo, R Tang, X He, C Ma, M Coates
Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020
1732020
Feature generation by convolutional neural network for click-through rate prediction
B Liu, R Tang, Y Chen, J Yu, H Guo, Y Zhang
The World Wide Web Conference, 1119-1129, 2019
1692019
Large-scale interactive recommendation with tree-structured policy gradient
H Chen, X Dai, H Cai, W Zhang, X Wang, R Tang, Y Zhang, Y Yu
Proceedings of the AAAI conference on artificial intelligence 33 (01), 3312-3320, 2019
1632019
Multi-graph convolution collaborative filtering
J Sun, Y Zhang, C Ma, M Coates, H Guo, R Tang, X He
2019 IEEE International Conference on Data Mining (ICDM), 1306-1311, 2019
1602019
Deep reinforcement learning based recommendation with explicit user-item interactions modeling
F Liu, R Tang, X Li, W Zhang, Y Ye, H Chen, H Guo, Y Zhang
arXiv preprint arXiv:1810.12027, 2018
1562018
Towards open-world recommendation with knowledge augmentation from large language models
Y Xi, W Liu, J Lin, X Cai, H Zhu, J Zhu, B Chen, R Tang, W Zhang, Y Yu
Proceedings of the 18th ACM Conference on Recommender Systems, 12-22, 2024
1212024
Deep learning for click-through rate estimation
W Zhang, J Qin, W Guo, R Tang, X He
arXiv preprint arXiv:2104.10584, 2021
1162021
An embedding learning framework for numerical features in ctr prediction
H Guo, B Chen, R Tang, W Zhang, Z Li, X He
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
1032021
Graphsail: Graph structure aware incremental learning for recommender systems
Y Xu, Y Zhang, W Guo, H Guo, R Tang, M Coates
Proceedings of the 29th ACM International Conference on Information …, 2020
982020
A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks
J Sun, W Guo, D Zhang, Y Zhang, F Regol, Y Hu, H Guo, R Tang, H Yuan, ...
Proceedings of the 26th ACM SIGKDD international conference on knowledge …, 2020
922020
Deepfm: An end-to-end wide & deep learning framework for CTR prediction
H Guo, R Tang, Y Ye, Z Li, X He, Z Dong
arXiv preprint arXiv:1804.04950, 2018
832018
PAL: a position-bias aware learning framework for CTR prediction in live recommender systems
H Guo, J Yu, Q Liu, R Tang, Y Zhang
Proceedings of the 13th ACM Conference on Recommender Systems, 452-456, 2019
762019
Dropnas: Grouped operation dropout for differentiable architecture search
W Hong, G Li, W Zhang, R Tang, Y Wang, Z Li, Y Yu
arXiv preprint arXiv:2201.11679, 2022
662022
An efficient and truthful pricing mechanism for team formation in crowdsourcing markets
Q Liu, T Luo, R Tang, S Bressan
2015 IEEE International Conference on Communications (ICC), 567-572, 2015
662015
State representation modeling for deep reinforcement learning based recommendation
F Liu, R Tang, X Li, W Zhang, Y Ye, H Chen, H Guo, Y Zhang, X He
Knowledge-Based Systems 205, 106170, 2020
642020
Multi-behavior sequential transformer recommender
E Yuan, W Guo, Z He, H Guo, C Liu, R Tang
Proceedings of the 45th international ACM SIGIR conference on research and …, 2022
632022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20