Distinct turbulent regions in the wake of a wind turbine and their inflow-dependent locations: the creation of a wake map I Neunaber, M Hölling, RJAM Stevens, G Schepers, J Peinke Energies 13 (20), 5392, 2020 | 42 | 2020 |
Round-robin tests of porous disc models S Aubrun, M Bastankhah, RB Cal, B Conan, RJ Hearst, D Hoek, M Hölling, ... Journal of Physics: Conference Series 1256 (1), 012004, 2019 | 34 | 2019 |
Comparison of the turbulence in the wakes of an actuator disc and a model wind turbine by higher order statistics: A wind tunnel study I Neunaber, M Hölling, J Whale, J Peinke Renewable Energy 179, 1650-1662, 2021 | 32 | 2021 |
Wind tunnel validation of a closed loop active power control for wind farms V Petrović, J Schottler, I Neunaber, M Hölling, M Kühn Journal of Physics: Conference Series 1037 (3), 032020, 2018 | 25 | 2018 |
Multi-scale/fractal processes in the wake of a wind turbine array boundary layer N Ali, A Fuchs, I Neunaber, J Peinke, RB Cal Journal of Turbulence 20 (2), 93-120, 2019 | 18 | 2019 |
Application of the Townsend–George theory for free shear flows to single and double wind turbine wakes – a wind tunnel study I Neunaber, J Peinke, M Obligado Wind Energy Science 7 (1), 201-219, 2022 | 16* | 2022 |
Stochastic investigation of the evolution of small-scale turbulence in the wake of a wind turbine exposed to different inflow conditions I Neunaber Universität Oldenburg, 2019 | 16 | 2019 |
First characterization of a new perturbation system for gust generation: the chopper I Neunaber, C Braud Wind Energy Science 5 (2), 759-773, 2020 | 14 | 2020 |
Model-free control of the dynamic lift of a wind turbine blade section: experimental results L Michel, I Neunaber, R Mishra, C Braud, F Plestan, JP Barbot, X Boucher, ... Journal of Physics: Conference Series 2265 (3), 032068, 2022 | 12 | 2022 |
Application of the Townsend-George wake theory to field measurements of wind turbine wakes I Neunaber, M Obligado, J Peinke, S Aubrun Journal of Physics: Conference Series 1934 (1), 012004, 2021 | 12 | 2021 |
Leading effect for wind turbine wake models I Neunaber, M Hölling, M Obligado Renewable Energy 223, 119935, 2024 | 11 | 2024 |
Wind tunnel study on natural instability of the normal force on a full‐scale wind turbine blade section at Reynolds number 4.7 · 10^6 I Neunaber, F Danbon, A Soulier, D Voisin, E Guilmineau, P Delpech, ... Wind Energy, 1- 11, 2022 | 8 | 2022 |
Comparison of the development of a wind turbine wake under different inflow conditions I Neunaber, J Schottler, J Peinke, M Hölling Progress in Turbulence VII: Proceedings of the iTi Conference in Turbulence …, 2017 | 8 | 2017 |
Characterizing porous disk wakes in different turbulent inflow conditions with higher-order statistics MK Vinnes, I Neunaber, HMH Lykke, RJ Hearst Experiments in Fluids 64 (2), 25, 2023 | 6 | 2023 |
Wind tunnel study on the tip speed ratio’s impact on a wind turbine wake development I Neunaber, M Hölling, M Obligado Energies 15 (22), 8607, 2022 | 6 | 2022 |
Turbulence of Wakes I Neunaber Handbook of Wind Energy Aerodynamics, 2021 | 6 | 2021 |
Wind tunnel study: is turbulent intensity a good candidate to help in bypassing low Reynolds number effects on 2d blade sections? R Mishra, I Neunaber, E Guilmineau, C Braud Journal of Physics: Conference Series 2265 (2), 022095, 2022 | 4 | 2022 |
Aerodynamic behavior of an airfoil under extreme wind conditions I Neunaber, C Braud Journal of Physics: Conference Series 1618 (3), 032035, 2020 | 3 | 2020 |
A novel lift controller for a wind turbine blade section using an active flow control device including saturations: experimental results L Michel, I Neunaber, R Mishra, C Braud, F Plestan, JP Barbot, P Hamon IEEE Transactions on Control Systems Technology, 2024 | 2 | 2024 |
A novel lift controller for a wind turbine blade section using an active flow control device: experimental results L Michel, I Neunaber, R Mishra, C Braud, F Plestan, JP Barbot, P Hamon 2022 IEEE Conference on Control Technology and Applications (CCTA), 1327-1332, 2022 | 2 | 2022 |