Seguir
Aliakbar mohamadifar
Aliakbar mohamadifar
phd
Dirección de correo verificada de hormozgan.ac.ir
Título
Citado por
Citado por
Año
Spatial mapping of the provenance of storm dust: Application of data mining and ensemble modelling
H Gholami, A Mohamadifar, AL Collins
Atmospheric Research 233, 104716, 2020
1072020
Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran
H Gholami, A Mohamadifar, A Sorooshian, JD Jansen
Atmospheric pollution research 11 (8), 1303-1315, 2020
972020
Mapping wind erosion hazard with regression-based machine learning algorithms
H Gholami, A Mohammadifar, DT Bui, AL Collins
Scientific Reports 10 (1), 20494, 2020
632020
Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory
A Mohammadifar, H Gholami, JR Comino, AL Collins
Catena 200, 105178, 2021
622021
Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran
H Gholami, A Mohammadifar, S Golzari, DG Kaskaoutis, AL Collins
Aeolian Research 50, 100682, 2021
542021
Integrated modelling for mapping spatial sources of dust in central Asia-An important dust source in the global atmospheric system
H Gholami, A Mohammadifar, H Malakooti, Y Esmaeilpour, S Golzari, ...
Atmospheric Pollution Research 12 (9), 101173, 2021
412021
Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion
H Gholami, A Mohammadifar, S Golzari, Y Song, B Pradhan
Science of the Total Environment 904, 166960, 2023
402023
A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust
H Gholami, A Mohammadifar, HR Pourghasemi, AL Collins
Environmental Science and Pollution Research 27, 42022-42039, 2020
322020
Novel integrated modelling based on multiplicative long short-term memory (mLSTM) deep learning model and ensemble multi-criteria decision making (MCDM) models for mapping …
A Mohammadifar, H Gholami, S Golzari
Journal of Environmental Management 345, 118838, 2023
312023
Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source
H Gholami, A Mohammadifar
Scientific Reports 12 (1), 19342, 2022
302022
Spatial modelling of soil salinity: deep or shallow learning models?
A Mohammadifar, H Gholami, S Golzari, AL Collins
Environmental Science and Pollution Research 28, 39432-39450, 2021
302021
Mapping of the wind erodible fraction of soil by bidirectional gated recurrent unit (BiGRU) and bidirectional recurrent neural network (BiRNN) deep learning models
M Rezaei, A Mohammadifar, H Gholami, M Mina, MJPM Riksen, ...
Catena 223, 106953, 2023
282023
Predicting land susceptibility to atmospheric dust emissions in central Iran by combining integrated data mining and a regional climate model
H Gholami, A Mohamadifar, S Rahimi, DG Kaskaoutis, AL Collins
Atmospheric Pollution Research 12 (4), 172-187, 2021
282021
Stacking-and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence
A Mohammadifar, H Gholami, S Golzari
Environmental Science and Pollution Research 30 (10), 26580-26595, 2023
232023
Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory
A Mohammadifar, H Gholami, S Golzari
Scientific Reports 12 (1), 15167, 2022
212022
Modeling land susceptibility to wind erosion hazards using LASSO regression and graph convolutional networks
H Gholami, A Mohammadifar, KE Fitzsimmons, Y Li, DG Kaskaoutis
Frontiers in Environmental Science 11, 1187658, 2023
172023
Intrinsic and extrinsic techniques for quantification uncertainty of an interpretable GRU deep learning model used to predict atmospheric total suspended particulates (TSP) in …
H Gholami, A Mohammadifar, RD Behrooz, DG Kaskaoutis, Y Li, Y Song
Environmental Pollution 342, 123082, 2024
132024
Combination of Multi-criteria Decision-making Models and Regional Flood Analysis Technique to Prioritize Subwatersheds for Flood Control (Case study: Dehbar Watershed of Khorasan)
AM Ali Reza Nafarzadegan
Geography and Environmental Hazards 30, 2019
11*2019
An assessment of global land susceptibility to wind erosion based on deep-active learning modelling and interpretation techniques
H Gholami, A Mohammadifar, Y Song, Y Li, P Rahmani, DG Kaskaoutis, ...
Scientific Reports 14 (1), 18951, 2024
62024
Mapping wind erosion hazard with regression-based machine learning algorithms. Sci Rep 10: 20494
H Gholami, A Mohammadifar, DT Bui, AL Collins
52020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20