Seguir
Joris M. Mooij
Joris M. Mooij
Professor in Mathematical Statistics, Korteweg-de Vries Institute, University of Amsterdam (NL)
Dirección de correo verificada de uva.nl - Página principal
Título
Citado por
Citado por
Año
MAGMA: Generalized Gene-Set Analysis of GWAS Data
CA de Leeuw, JM Mooij, T Heskes, D Posthuma
PLOS Computational Biology 11 (4), e1004219, 2015
29412015
Nonlinear causal discovery with additive noise models
PO Hoyer, D Janzing, JM Mooij, J Peters, B Schölkopf
Advances in neural information processing systems (NIPS*2008), 689-696, 2009
12392009
Causal effect inference with deep latent-variable models
C Louizos, U Shalit, JM Mooij, D Sontag, R Zemel, M Welling
Advances in neural information processing systems 30, 2017
8692017
On causal and anticausal learning
B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, J Mooij
arXiv preprint arXiv:1206.6471, 2012
6842012
Causal discovery with continuous additive noise models
J Peters, JM Mooij, D Janzing, B Schölkopf
6152014
Distinguishing cause from effect using observational data: methods and benchmarks
JM Mooij, J Peters, D Janzing, J Zscheischler, B Schölkopf
Journal of Machine Learning Research 17 (32), 1-102, 2016
5752016
libDAI: A free and open source C++ library for discrete approximate inference in graphical models
JM Mooij
The Journal of Machine Learning Research 11, 2169-2173, 2010
3732010
Information-geometric approach to inferring causal directions
D Janzing, J Mooij, K Zhang, J Lemeire, J Zscheischler, P Daniušis, ...
Artificial Intelligence 182, 1-31, 2012
3652012
Sufficient conditions for convergence of the sum–product algorithm
JM Mooij, HJ Kappen
IEEE Transactions on Information Theory 53 (12), 4422-4437, 2007
3062007
Joint causal inference from multiple contexts
JM Mooij, S Magliacane, T Claassen
Journal of machine learning research 21 (99), 1-108, 2020
2552020
Domain adaptation by using causal inference to predict invariant conditional distributions
S Magliacane, T van Ommen, T Claassen, S Bongers, P Versteeg, ...
Advances in Neural Information Processing Systems, 10846-10856, 2018
2482018
Inferring deterministic causal relations
P Daniušis, D Janzing, J Mooij, J Zscheischler, B Steudel, K Zhang, ...
Proceedings of the 26th Annual Conference on Uncertainty in Artificial …, 2010
2182010
Foundations of structural causal models with cycles and latent variables
S Bongers, P Forré, J Peters, JM Mooij
The Annals of Statistics 49 (5), 2885-2915, 2021
1892021
Identifiability of causal graphs using functional models
J Peters, J Mooij, D Janzing, B Schölkopf
Proceedings of the 27th Annual Conference on Uncertainty in Artificial …, 2011
1792011
Regression by dependence minimization and its application to causal inference
J Mooij, D Janzing, J Peters, B Schölkopf
Proceedings of the 26th Annual International Conference on Machine Learning …, 2009
172*2009
Methods for causal inference from gene perturbation experiments and validation
N Meinshausen, A Hauser, JM Mooij, J Peters, P Versteeg, P Bühlmann
Proceedings of the National Academy of Sciences 113 (27), 7361-7368, 2016
1682016
Probabilistic latent variable models for distinguishing between cause and effect
O Stegle, D Janzing, K Zhang, JM Mooij, B Schölkopf
Advances in Neural Information Processing Systems (NIPS*2010), 1687-1695, 2010
1562010
Learning sparse causal models is not NP-hard
T Claassen, J Mooij, T Heskes
Proceedings of the 29th Annual Conference on Uncertainty in Artificial …, 2013
1492013
Causal consistency of structural equation models
PK Rubenstein, S Weichwald, S Bongers, JM Mooij, D Janzing, ...
arXiv preprint arXiv:1707.00819, 2017
1242017
From ordinary differential equations to structural causal models: the deterministic case
JM Mooij, D Janzing, B Schölkopf
Proceedings of the 29th Annual Conference on Uncertainty in Artificial …, 2013
1212013
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20