Seguir
David Eriksson
David Eriksson
Research Scientist Manager at Meta
Dirección de correo verificada de fb.com - Página principal
Título
Citado por
Citado por
Año
Scalable Global Optimization via Local Bayesian Optimization
D Eriksson, M Pearce, J Gardner, RD Turner, M Poloczek
Advances in Neural Information Processing Systems, 2019
5292019
Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020
R Turner, D Eriksson, M McCourt, J Kiili, E Laaksonen, Z Xu, I Guyon
NeurIPS 2020 Competition and Demonstration Track, 3-26, 2021
3842021
High-dimensional Bayesian optimization with sparse axis-aligned subspaces
D Eriksson, M Jankowiak
Uncertainty in Artificial Intelligence, 493-503, 2021
1412021
Scalable Constrained Bayesian Optimization
D Eriksson, M Poloczek
International Conference on Artificial Intelligence and Statistics, 730-738, 2021
1242021
Multi-objective bayesian optimization over high-dimensional search spaces
S Daulton, D Eriksson, M Balandat, E Bakshy
Uncertainty in Artificial Intelligence, 507-517, 2022
1162022
Scaling Gaussian Process Regression with Derivatives
D Eriksson, K Dong, EH Lee, D Bindel, AG Wilson
Advances in Neural Information Processing Systems, 2018
1042018
Scalable Log Determinants for Gaussian Process Kernel Learning
K Dong, D Eriksson, H Nickisch, D Bindel, AG Wilson
Advances in Neural Information Processing Systems, 2017
1032017
pySOT and POAP: An Event-Driven Asynchronous Framework for Surrogate Optimization
D Eriksson, D Bindel, CA Shoemaker
arXiv preprint arXiv:1908.00420, 2019
922019
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
G Pleiss, M Jankowiak, D Eriksson, A Damle, JR Gardner
Advances in Neural Information Processing Systems, 2020
542020
Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization
S Daulton, X Wan, D Eriksson, M Balandat, MA Osborne, E Bakshy
Advances in Neural Information Processing Systems 35, 12760-12774, 2022
462022
Continental hydrology loading observed by VLBI measurements
D Eriksson, DS MacMillan
Journal of Geodesy 88 (7), 675-690, 2014
422014
Unexpected improvements to expected improvement for bayesian optimization
S Ament, S Daulton, D Eriksson, M Balandat, E Bakshy
Advances in Neural Information Processing Systems 36, 2024
352024
Tropospheric delay ray tracing applied in VLBI analysis
D Eriksson, DS MacMillan, JM Gipson
Journal of Geophysical Research: Solid Earth 119 (12), 9156-9170, 2014
342014
A nonmyopic approach to cost-constrained Bayesian optimization
EH Lee, D Eriksson, V Perrone, M Seeger
Uncertainty in Artificial Intelligence, 568-577, 2021
292021
Efficient rollout strategies for Bayesian optimization
E Lee, D Eriksson, D Bindel, B Cheng, M Mccourt
Conference on Uncertainty in Artificial Intelligence, 260-269, 2020
232020
Discovering many diverse solutions with bayesian optimization
N Maus, K Wu, D Eriksson, J Gardner
arXiv preprint arXiv:2210.10953, 2022
172022
Latency-aware neural architecture search with multi-objective bayesian optimization
D Eriksson, PIJ Chuang, S Daulton, P Xia, A Shrivastava, A Babu, S Zhao, ...
arXiv preprint arXiv:2106.11890, 2021
172021
Surrogate optimization toolbox (pySOT)
D Eriksson, D Bindel, C Shoemaker
github.com/dme65/pySOT, 2015
142015
Bayesian optimization over high-dimensional combinatorial spaces via dictionary-based embeddings
A Deshwal, S Ament, M Balandat, E Bakshy, JR Doppa, D Eriksson
International Conference on Artificial Intelligence and Statistics, 7021-7039, 2023
122023
Sparse bayesian optimization
S Liu, Q Feng, D Eriksson, B Letham, E Bakshy
International Conference on Artificial Intelligence and Statistics, 3754-3774, 2023
102023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20