Seguir
John Mackenzie
John Mackenzie
Professor of Mathematics, University of Strathclyde
Dirección de correo verificada de maths.strath.ac.uk - Página principal
Título
Citado por
Citado por
Año
Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour
MP Neilson, DM Veltman, PJM van Haastert, SD Webb, JA Mackenzie, ...
PLoS biology 9 (5), e1000618, 2011
2072011
A moving mesh finite element method for the solution of two-dimensional Stefan problems
G Beckett, JA Mackenzie, ML Robertson
Journal of Computational Physics 168 (2), 500-518, 2001
1812001
Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem
G Beckett, JA Mackenzie
Applied Numerical Mathematics 35 (2), 87-109, 2000
1682000
A moving mesh method for one-dimensional hyperbolic conservation laws
JM Stockie, JA Mackenzie, RD Russell
SIAM Journal on Scientific Computing 22 (5), 1791-1813, 2001
1522001
A posteriori error analysis for numerical approximations of Friedrichs systems
P Houston, JA Mackenzie, E Süli, G Warnecke
Numerische Mathematik 82 (3), 433-470, 1999
1281999
Cell vertex algorithms for the compressible Navier-Stokes equations
PI Crumpton, JA Mackenzie, KW Morton
Journal of computational physics 109 (1), 1-15, 1993
1191993
Modeling cell movement and chemotaxis using pseudopod-based feedback
MP Neilson, JA Mackenzie, SD Webb, RH Insall
SIAM Journal on Scientific Computing 33 (3), 1035-1057, 2011
1152011
On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution
G Beckett, JA Mackenzie, A Ramage, DM Sloan
Journal of Computational Physics 167 (2), 372-392, 2001
1152001
On a uniformly accurate finite difference approximation of a singularly perturbed reaction–diffusion problem using grid equidistribution
G Beckett, JA Mackenzie
Journal of computational and applied mathematics 131 (1-2), 381-405, 2001
1092001
The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method
JA Mackenzie, ML Robertson
Journal of computational Physics 161 (2), 537-557, 2000
1002000
A moving mesh method for the solution of the one-dimensional phase-field equations
JA Mackenzie, ML Robertson
Journal of Computational Physics 181 (2), 526-544, 2002
942002
Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid
J Mackenzie
IMA journal of numerical analysis 19 (2), 233-249, 1999
901999
HT Pentill a, D. Seweryniak, WB Walters
RJ Irvine, CN Davids, PJ Woods, DJ Blumenthal, LT Brown, LF Conticchio, ...
Phys. Rev. C 55, R1621, 1997
881997
Finite volume solutions of convection-diffusion test problems
JA Mackenzie, KW Morton
mathematics of computation 60 (201), 189-220, 1993
731993
A coupled bulk-surface model for cell polarisation
D Cusseddu, L Edelstein-Keshet, JA Mackenzie, S Portet, A Madzvamuse
Journal of theoretical biology 481, 119-135, 2019
702019
A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis
G MacDonald, JA Mackenzie, M Nolan, RH Insall
Journal of computational physics 309, 207-226, 2016
702016
Computational solution of two-dimensional unsteady PDEs using moving mesh methods
G Beckett, JA Mackenzie, A Ramage, DM Sloan
Journal of Computational Physics 182 (2), 478-495, 2002
682002
Finite element moving mesh analysis of phase change problems with natural convection
RT Tenchev, JA Mackenzie, TJ Scanlon, MT Stickland
CHT-04-Advances in Computational Heat Transfer III. Proceedings of the Third …, 2004
562004
Proton photoproduction from 12C
GE Cross, IJD MacGregor, JC McGeorge, J Ahrens, I Anthony, ...
Nuclear Physics A 593 (4), 463-487, 1995
401995
An analysis of stability and convergence of a finite-difference discretization of a model parabolic PDE in 1D using a moving mesh
JA Mackenzie, WR Mekwi
IMA journal of Numerical analysis 27 (3), 507-528, 2007
362007
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20