Seguir
Ahinoam Pollack
Ahinoam Pollack
Dirección de correo verificada de stanford.edu
Título
Citado por
Citado por
Año
Convolutional neural network for seismic impedance inversion
V Das, A Pollack, U Wollner, T Mukerji
Geophysics 84 (6), R869-R880, 2019
4462019
Accounting for subsurface uncertainty in enhanced geothermal systems to make more robust techno-economic decisions
A Pollack, T Mukerji
Applied energy 254, 113666, 2019
472019
What Are the Challenges in Developing Enhanced Geothermal Systems (EGS)? Observations from 64 EGS Sites
A Pollack, R Horne, T Mukerji
Proceedings World Geothermal Congress 2020, https://pangea.stanford.edu/ERE …, 2020
252020
Convolutional neural network for seismic impedance inversion. Geophysics, 84, R869–R880
V Das, A Pollack, U Wollner, T Mukerji
Preprint not peer reviewed, 2019
172019
Effect of rock physics modeling in impedance inversion from seismic data using convolutional neural network
V Das, A Pollack, U Wollner, T Mukerji
The 13th SEGJ International Symposium, Tokyo, Japan, 12-14 November 2018 …, 2019
122019
Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for geologically realistic structural models: Patua Geothermal Field case study
A Pollack, TT Cladouhos, MW Swyer, D Siler, T Mukerji, RN Horne
Geothermics 95, 102129, 2021
102021
Convolutional neural network for seismic impedance inversion: 88th Annual International Meeting, SEG, Expanded Abstracts, 2071–2075, doi: 10.1190/segam2018-2994378.1
V Das, A Pollack, U Wollner, T Mukerji
Abstract, 2018
102018
Automated well-log correlation using descriptors
A Pollack, Y Peng, W Kainan, S Ming-Kang, KH Tracy, JM Lomask
US Patent 11,220,898, 2022
82022
A spatial-statistical investigation of surface expressions associated with cyclic steaming in the Midway-Sunset Oil Field, California
A Pollack, T Mukerji, P Fu, D Nelson, B Bartling, M Toland, A Lopez, ...
Geomechanics and Geophysics for Geo-Energy and Geo-Resources 6, 1-23, 2020
52020
Stochastic Structural Modeling of a Geothermal Field: Patua Geothermal Field Case Study
A Pollack, TT Cladouhos, M Swyer, R Horne, T Mukerji
Stanford Geothermal Workshop, 2020
52020
Quantifying Geological Uncertainty and Optimizing Technoeconomic Decisions for Geothermal Reservoirs
A Pollack
Stanford University, 2020
22020
Spatial statistical investigation of surface expressions in the midway sunset oil field
A Pollack
SPE Annual Technical Conference and Exhibition?, D023S099R002, 2018
22018
Engineer Level Automated Interpretation of Geothermal Well Logs Using Convolutional Neural Networks
R Okoroafor, A Pollack
AGU Fall Meeting 2021, 2021
12021
What Earth Properties and Engineering Decisions Most Influence the Productivity of an Enhanced Geothermal System?
A Pollack, T Mukerji
Energy Procedia 158, 6024-6029, 2019
12019
Optimization of Enhanced Geothermal Systems under Geological and Reservoir Stimulation Uncertainty
A Pollack, T Mukerji
GRC Trans 42, 2018
12018
Stochastic Inversion of Gravity and Magnetic Data to Build Subsurface Geological Fault Models Using Evolution and Swarm Intelligence-Inspired Optimization Algorithms
D Vashisth, A Pollack, T Mukerji, D Siler
PROCEEDINGS, 48th Workshop on Geothermal Reservoir Engineering, 2023
2023
Correlating strata surfaces across well logs
Y Peng, A Pollack, W Kainan, S Ming-Kang, KH Tracy, JM Lomask
US Patent 11,409,016, 2022
2022
Characterization of an Enhanced Geothermal System Using Bayesian Evidential Learning
A Pollack, H Wu, T Mukerji, P Fu
AGU Fall Meeting Abstracts 2018, H11Q-1691, 2018
2018
Correlation of strata surfaces through well logs
Y Peng, A Pollack, K Wang, MK Shih, K Hansel Tracy, J Mathias Lomask
2017
Automatic Well Log Correlation
A Pollack, Y Peng, K Wang, MKK Shih, K Tracy, J Lomask
AAPG Annual Convention and Exhibition, 2017
2017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20