Seguir
Pieter-Jan Kindermans
Pieter-Jan Kindermans
Staff Research Scientist, Google Deepmind
Dirección de correo verificada de google.com
Título
Citado por
Citado por
Año
Schnet–a deep learning architecture for molecules and materials
KT Schütt, HE Sauceda, PJ Kindermans, A Tkatchenko, KR Müller
The Journal of Chemical Physics 148 (24), 2018
21102018
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions
K Schütt, PJ Kindermans, HE Sauceda Felix, S Chmiela, A Tkatchenko, ...
Advances in neural information processing systems 30, 2017
14872017
Don't Decay the Learning Rate, Increase the Batch Size
SL Smith, PJ Kindermans, C Ying, QV Le
ICLR 2018, 2018
13532018
Understanding and simplifying one-shot architecture search
GM Bender, P Kindermans, B Zoph, V Vasudevan, Q Le
International Conference on Machine Learning (ICML) 2018, 2018
9122018
A benchmark for interpretability methods in deep neural networks
S Hooker, D Erhan, PJ Kindermans, B Kim
Advances in neural information processing systems 32, 2019
908*2019
The (un) reliability of saliency methods
PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ...
Explainable AI: Interpreting, explaining and visualizing deep learning, 267-280, 2019
8412019
Sign language recognition using convolutional neural networks
L Pigou, S Dieleman, PJ Kindermans, B Schrauwen
Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and …, 2015
5922015
Deep dynamic neural networks for multimodal gesture segmentation and recognition
D Wu, L Pigou, PJ Kindermans, NDH Le, L Shao, J Dambre, JM Odobez
IEEE transactions on pattern analysis and machine intelligence 38 (8), 1583-1597, 2016
5852016
Learning how to explain neural networks: PatternNet and PatternAttribution
PJ Kindermans, KT Schuett, M Alber, KR Müller, D Erhan, B Kim, ...
ICLR 2018, 2018
4662018
iNNvestigate neural networks!
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
Journal of machine learning research 20 (93), 1-8, 2019
4572019
Phenaki: Variable length video generation from open domain textual description
R Villegas, M Babaeizadeh, PJ Kindermans, H Moraldo, H Zhang, ...
arXiv preprint arXiv:2210.02399, 2022
4072022
Bignas: Scaling up neural architecture search with big single-stage models
J Yu, P Jin, H Liu, G Bender, PJ Kindermans, M Tan, T Huang, X Song, ...
ECCV, 2020
3522020
Neural predictor for neural architecture search
W Wen, H Liu, H Li, Y Chen, G Bender, PJ Kindermans
ECCV, 2020
2402020
Mobiledets: Searching for object detection architectures for mobile accelerators
Y Xiong, H Liu, S Gupta, B Akin, G Bender, Y Wang, PJ Kindermans, ...
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
1852021
Can weight sharing outperform random architecture search? an investigation with tunas
G Bender, H Liu, B Chen, G Chu, S Cheng, PJ Kindermans, QV Le
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
1642020
Investigating the influence of noise and distractors on the interpretation of neural networks
PJ Kindermans, K Schütt, KR Müller, S Dähne
arXiv preprint arXiv:1611.07270, 2016
1552016
Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller
PJ Kindermans, M Tangermann, KR Müller, B Schrauwen
Journal of neural engineering 11 (3), 035005, 2014
1242014
Performance measurement for brain–computer or brain–machine interfaces: a tutorial
DE Thompson, LR Quitadamo, L Mainardi, S Gao, PJ Kindermans, ...
Journal of neural engineering 11 (3), 035001, 2014
1122014
True zero-training brain-computer interfacing–an online study
PJ Kindermans, M Schreuder, B Schrauwen, KR Müller, M Tangermann
PloS one 9 (7), e102504, 2014
1022014
A bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI
PJ Kindermans, D Verstraeten, B Schrauwen
PloS one 7 (4), e33758, 2012
942012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20