Seguir
David He
David He
Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago
Dirección de correo verificada de uic.edu
Título
Citado por
Citado por
Año
Deep learning based approach for bearing fault diagnosis
M He, D He
IEEE Transactions on Industry Applications 53 (3), 3057-3065, 2017
4822017
Using deep learning-based approach to predict remaining useful life of rotating components
J Deutsch, D He
IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (1), 11-20, 2017
4612017
A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
M Dong, D He
Mechanical systems and signal processing 21 (5), 2248-2266, 2007
4512007
Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis
M Dong, D He
European Journal of Operational Research 178 (3), 858-878, 2007
3792007
A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction
J Li, X Li, D He
IEEE Access 7, 75464-75475, 2019
2642019
Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification
R Li, D He
IEEE Transactions on Instrumentation and Measurement 61 (4), 990-1001, 2012
2302012
PM2. 5 concentration prediction using hidden semi-Markov model-based times series data mining
M Dong, D Yang, Y Kuang, D He, S Erdal, D Kenski
Expert Systems with Applications 36 (5), 9046-9055, 2009
1702009
Plastic bearing fault diagnosis based on a two-step data mining approach
D He, R Li, J Zhu
IEEE Transactions on Industrial Electronics 60 (8), 3429-3440, 2012
1622012
Lithium-ion battery life prognostic health management system using particle filtering framework
M Dalal, J Ma, D He
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of …, 2011
1502011
Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors—A comparative study
Y Qu, D He, J Yoon, B Van Hecke, E Bechhoefer, J Zhu
Sensors 14 (1), 1372-1393, 2014
1492014
Design of assembly systems for modular products
DW He, A Kusiak
IEEE Transactions on Robotics and Automation 13 (5), 646-655, 1997
1461997
Low speed bearing fault diagnosis using acoustic emission sensors
B Van Hecke, J Yoon, D He
Applied Acoustics 105, 35-44, 2016
1432016
Lubrication oil condition monitoring and remaining useful life prediction with particle filtering
J Zhu, JM Yoon, D He, Y Qu, E Bechhoefer
International Journal of Prognostics and Health Management 4, 124-138, 2013
1412013
Design of double-and triple-sampling X-bar control charts using genetic algorithms
D He, A Grigoryan, M Sigh
International Journal of Production Research 40 (6), 1387-1404, 2002
1382002
Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems
J Zhu, D He, E Bechhoefer
Journal of chemical science and technology 2 (3), 100-115, 2013
1362013
Equipment health diagnosis and prognosis using hidden semi-Markov models
M Dong, D He, P Banerjee, J Keller
The International Journal of Advanced Manufacturing Technology 30, 738-749, 2006
1332006
Online particle‐contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines
J Zhu, JM Yoon, D He, E Bechhoefer
Wind Energy 18 (6), 1131-1149, 2015
1242015
Analysis of sequential failures for assessment of reliability and safety of manufacturing systems
A Adamyan, D He
Reliability Engineering & System Safety 76 (3), 227-236, 2002
1192002
Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning
LI Xueyi, LI Jialin, QU Yongzhi, HE David
Chinese Journal of Aeronautics 33 (2), 418-426, 2020
1132020
Fault features extraction for bearing prognostics
R Li, P Sopon, D He
Journal of Intelligent Manufacturing 23, 313-321, 2012
1052012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20