Seguir
Laurens van der Maaten
Laurens van der Maaten
Distinguished Research Scientist, Llama Team, Meta AI
Dirección de correo verificada de meta.com - Página principal
Título
Citado por
Citado por
Año
Visualizing data using t-SNE
L van der Maaten, G Hinton
The Journal of Machine Learning Research 9 (2579-2605), 85, 2008
496582008
Densely Connected Convolutional Networks
G Huang, Z Liu, L van der Maaten, KQ Weinberger
IEEE Conference on Computer Vision and Pattern Recognition, 2016
493902016
Dimensionality reduction: A comparative review
LJP Van der Maaten, EO Postma, HJ Van den Herik
Technical Report TiCC TR 2009-005, 2009
4007*2009
Accelerating t-SNE using Tree-Based Algorithms
L Van Der Maaten
The Journal of Machine Learning Research 15 (1), 3221-3245, 2014
31282014
Clevr: A diagnostic dataset for compositional language and elementary visual reasoning
J Johnson, B Hariharan, L Van Der Maaten, L Fei-Fei, C Lawrence Zitnick, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2017
25592017
3d semantic segmentation with submanifold sparse convolutional networks
B Graham, M Engelcke, L Van Der Maaten
Proceedings of the IEEE conference on computer vision and pattern …, 2018
17262018
Self-supervised learning of pretext-invariant representations
I Misra, L Maaten
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
16932020
Countering adversarial images using input transformations
C Guo, M Rana, M Cisse, L Van Der Maaten
arXiv preprint arXiv:1711.00117, 2017
16832017
Exploring the limits of weakly supervised pretraining
D Mahajan, R Girshick, V Ramanathan, K He, M Paluri, Y Li, A Bharambe, ...
Proceedings of the European conference on computer vision (ECCV), 181-196, 2018
16552018
The Llama 3 Herd of Models
A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ...
arXiv preprint arXiv:2407.21783, 2024
11092024
Feature denoising for improving adversarial robustness
C Xie, Y Wu, L Maaten, AL Yuille, K He
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
10472019
Multi-scale dense networks for resource efficient image classification
G Huang, D Chen, T Li, F Wu, L Van Der Maaten, KQ Weinberger
arXiv preprint arXiv:1703.09844, 2017
1047*2017
Condensenet: An efficient densenet using learned group convolutions
G Huang, S Liu, L Van der Maaten, KQ Weinberger
Proceedings of the IEEE conference on computer vision and pattern …, 2018
10122018
Learning a parametric embedding by preserving local structure
L van der Maaten
Proceedings of AI-STATS, 2009
7482009
Inferring and executing programs for visual reasoning
J Johnson, B Hariharan, L Van Der Maaten, J Hoffman, L Fei-Fei, ...
Proceedings of the IEEE international conference on computer vision, 2989-2998, 2017
6472017
Convolutional networks with dense connectivity
G Huang, Z Liu, G Pleiss, L Van Der Maaten, KQ Weinberger
IEEE transactions on pattern analysis and machine intelligence 44 (12), 8704 …, 2019
5472019
Submanifold sparse convolutional networks
B Graham, L Van der Maaten
arXiv preprint arXiv:1706.01307, 2017
5472017
Rtsne: T-distributed stochastic neighbor embedding using a Barnes-Hut implementation
J Krijthe
CRAN: Contributed Packages, 2014
543*2014
Learning Visual Features from Large Weakly Supervised Data
A Joulin, L van der Maaten, A Jabri, N Vasilache
European Conference on Computer Vision, 2016
4532016
Certified data removal from machine learning models
C Guo, T Goldstein, A Hannun, L Van Der Maaten
arXiv preprint arXiv:1911.03030, 2019
4242019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20