Seguir
Laurent Pagnier
Laurent Pagnier
Visiting Assistant Professor, University of Arizona
Dirección de correo verificada de math.arizona.edu
Título
Citado por
Citado por
Año
Inertia location and slow network modes determine disturbance propagation in large-scale power grids
L Pagnier, P Jacquod
PloS one 14 (3), e0213550, 2019
782019
The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities
M Tyloo, L Pagnier, P Jacquod
Science advances 5 (11), eaaw8359, 2019
772019
Physics-informed graphical neural network for parameter & state estimations in power systems
L Pagnier, M Chertkov
arXiv preprint arXiv:2102.06349, 2021
502021
Optimal Placement of Inertia and Primary Control: A Matrix Perturbation Theory Approach
L Pagnier, P Jacquod
IEEE Access 7, 145889-145900, 2019
422019
Disturbance propagation, inertia location and slow modes in large-scale high voltage power grids
L Pagnier, P Jacquod
arXiv preprint arXiv:1810.04982, 2018
142018
Toward model reduction for power system transients with physics-informed PDE
L Pagnier, J Fritzsch, P Jacquod, M Chertkov
IEEE Access 10, 65118-65125, 2022
132022
How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid
L Pagnier, P Jacquod
Energy 157, 550-560, 2018
122018
Embedding power flow into machine learning for parameter and state estimation
L Pagnier, M Chertkov
arXiv preprint arXiv:2103.14251, 2021
112021
Optimal placement of inertia and primary control in high voltage power grids
P Jacquod, L Pagnier
2019 53rd Annual Conference on Information Sciences and Systems (CISS), 1-6, 2019
102019
A predictive pan-European economic and production dispatch model for the energy transition in the electricity sector
L Pagnier, P Jacquod
2017 IEEE Manchester PowerTech, 1-6, 2017
92017
Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
R Ferrando, L Pagnier, R Mieth, Z Liang, Y Dvorkin, D Bienstock, ...
IEEE Transactions on Energy Markets, Policy and Regulation, 2023
62023
Locating line and node disturbances in networks of diffusively coupled dynamical agents
R Delabays, L Pagnier, M Tyloo
New Journal of Physics 23 (4), 043037, 2021
52021
Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems. arXiv 2021
L Pagnier, M Chertkov
arXiv preprint arXiv:2102.06349, 0
5
Locating fast-varying line disturbances with the frequency mismatch
R Delabays, L Pagnier, M Tyloo
IFAC-PapersOnLine 55 (13), 270-275, 2022
42022
PanTaGruEl-a pan-European transmission grid and electricity generation model (Zenodo Rep.)
L Pagnier, P Jacquod
42019
Large electric load fluctuations in energy-efficient buildings and how to suppress them with demand side management
T Coletta, R Delabays, L Pagnier, P Jacquod
2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT …, 2016
42016
Control of line pack in natural gas system: Balancing limited resources under uncertainty
C Hyett, L Pagnier, J Alisse, L Sabban, I Goldshtein, M Chertkov
PSIG Annual Meeting, PSIG-2314, 2023
22023
Physics-Informed Critic in an Actor-Critic Reinforcement Learning for Swimming in Turbulence
C Koh, L Pagnier, M Chertkov
arXiv preprint arXiv:2406.10242, 2024
12024
Machine learning for electricity market clearing
L Pagnier, R Ferrando, Y Dvorkin, M Chertkov
arXiv preprint arXiv:2205.11641, 2022
12022
Swissgrid’s strategic grid 2025: an independent analysis
L Pagnier, P Jacquod
12018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20