Seguir
Shenhao Wang
Shenhao Wang
University of Florida; Massachusetts Institute of Technology
Dirección de correo verificada de ufl.edu - Página principal
Título
Citado por
Citado por
Año
Risk preference and adoption of autonomous vehicles
S Wang, J Zhao
Transportation research part A: policy and practice 126, 215-229, 2019
1532019
Choice modelling in the age of machine learning-Discussion paper
S van Cranenburgh, S Wang, A Vij, F Pereira, J Walker
Journal of Choice Modelling 42, 100340, 2022
122*2022
Deep neural networks for choice analysis: Extracting complete economic information for interpretation
S Wang, Q Wang, J Zhao
Transportation Research Part C: Emerging Technologies 118, 102701, 2020
1062020
Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions
S Wang, B Mo, J Zhao
Transportation Research Part C: Emerging Technologies 112, 234-251, 2020
912020
Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark
S Wang, B Mo, S Hess, J Zhao
arXiv preprint arXiv:2102.01130, 2021
502021
Deep neural networks for choice analysis: A statistical learning theory perspective
S Wang, Q Wang, N Bailey, J Zhao
Transportation Research Part B: Methodological 148, 60-81, 2021
45*2021
Uncertainty quantification of sparse travel demand prediction with spatial-temporal graph neural networks
D Zhuang, S Wang, H Koutsopoulos, J Zhao
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
412022
Multitask learning deep neural networks to combine revealed and stated preference data
S Wang, Q Wang, J Zhao
Journal of choice modelling 37, 100236, 2020
362020
Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks
S Wang, B Mo, J Zhao
Transportation research part B: methodological 146, 333-358, 2021
342021
The relationship between ridehailing and public transit in Chicago: A comparison before and after COVID-19
P Meredith-Karam, H Kong, S Wang, J Zhao
Journal of Transport Geography 97, 103219, 2021
302021
Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models
Y Zheng, S Wang, J Zhao
Transportation Research Part C: Emerging Technologies 132, 103410, 2021
272021
The distributional effects of lotteries and auctions—License plate regulations in Guangzhou
S Wang, J Zhao
Transportation Research Part A: Policy and Practice 106, 473-483, 2017
252017
Uncertainty quantification of spatiotemporal travel demand with probabilistic graph neural networks
Q Wang, S Wang, D Zhuang, H Koutsopoulos, J Zhao
IEEE Transactions on Intelligent Transportation Systems, 2024
212024
Measuring policy leakage of Beijing’s car ownership restriction
Y Zheng, J Moody, S Wang, J Zhao
Transportation Research Part A: Policy and Practice 148, 223-236, 2021
212021
Transportation policy profiles of Chinese city clusters: A mixed methods approach
J Moody, S Wang, J Chun, X Ni, J Zhao
Transportation Research Interdisciplinary Perspectives 2, 100053, 2019
202019
ST-GIN: An uncertainty quantification approach in traffic data imputation with spatio-temporal graph attention and bidirectional recurrent united neural networks
Z Wang, D Zhuang, Y Li, J Zhao, P Sun, S Wang, Y Hu
2023 IEEE 26th International Conference on Intelligent Transportation …, 2023
112023
Spatiotemporal graph neural networks with uncertainty quantification for traffic incident risk prediction
X Gao, X Jiang, D Zhuang, H Chen, S Wang, J Haworth
arXiv preprint arXiv:2309.05072, 2023
112023
Deep hybrid model with satellite imagery: How to combine demand modeling and computer vision for travel behavior analysis?
Q Wang, S Wang, Y Zheng, H Lin, X Zhang, J Zhao, J Walker
Transportation Research Part B: Methodological 179, 102869, 2024
82024
Fairness-enhancing deep learning for ride-hailing demand prediction
Y Zheng, Q Wang, D Zhuang, S Wang, J Zhao
IEEE Open Journal of Intelligent Transportation Systems, 2023
82023
Cooperative bus holding and stop-skipping: A deep reinforcement learning framework
J Rodriguez, HN Koutsopoulos, S Wang, J Zhao
Transportation Research Part C: Emerging Technologies 155, 104308, 2023
72023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20