Seguir
Corneel Casert
Corneel Casert
Dirección de correo verificada de lbl.gov
Título
Citado por
Citado por
Año
Restricted boltzmann machines for quantum states with non-abelian or anyonic symmetries
T Vieijra, C Casert, J Nys, W De Neve, J Haegeman, J Ryckebusch, ...
Physical review letters 124 (9), 097201, 2020
108*2020
Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system
C Casert, T Vieijra, J Nys, J Ryckebusch
Physical Review E 99 (2), 023304, 2019
472019
The isospin and neutron-to-proton excess dependence of short-range correlations
J Ryckebusch, W Cosyn, S Stevens, C Casert, J Nys
Physics Letters B 792, 21-28, 2019
312019
Social stability and extended social balance—Quantifying the role of inactive links in social networks
AM Belaza, J Ryckebusch, A Bramson, C Casert, K Hoefman, K Schoors, ...
Physica A: Statistical Mechanics and its Applications 518, 270-284, 2019
282019
Robust prediction of force chains in jammed solids using graph neural networks
R Mandal, C Casert, P Sollich
Nature Communications 13 (1), 4424, 2022
242022
Dynamical large deviations of two-dimensional kinetically constrained models using a neural-network state ansatz
C Casert, T Vieijra, S Whitelam, I Tamblyn
Physical review letters 127 (12), 120602, 2021
222021
Isospin composition of the high-momentum fluctuations in nuclei from asymptotic momentum distributions
J Ryckebusch, W Cosyn, T Vieijra, C Casert
Physical Review C 100 (5), 054620, 2019
212019
Training neural networks using Metropolis Monte Carlo and an adaptive variant
S Whitelam, V Selin, I Benlolo, C Casert, I Tamblyn
Machine Learning: Science and Technology 3 (4), 045026, 2022
132022
Optical lattice experiments at unobserved conditions with generative adversarial deep learning
C Casert, K Mills, T Vieijra, J Ryckebusch, I Tamblyn
Physical Review Research 3 (3), 033267, 2021
112021
Learning stochastic dynamics and predicting emergent behavior using transformers
C Casert, I Tamblyn, S Whitelam
Nature Communications 15 (1), 1875, 2024
92024
Adversarial generation of mesoscale surfaces from small-scale chemical motifs
K Mills, C Casert, I Tamblyn
The Journal of Physical Chemistry C 124 (42), 23158-23163, 2020
92020
Learning protocols for the fast and efficient control of active matter
C Casert, S Whitelam
Nature Communications 15 (1), 9128, 2024
42024
Thermodynamic computing out of equilibrium
S Whitelam, C Casert
arXiv preprint arXiv:2412.17183, 2024
12024
Using the Metropolis algorithm to explore the loss surface of a recurrent neural network
C Casert, S Whitelam
The Journal of Chemical Physics 161 (23), 2024
2024
Adaptive AI-Driven Material Synthesis: Towards Autonomous 2D Materials Growth
L Sabattini, A Coriolano, C Casert, S Forti, ES Barnard, F Beltram, ...
arXiv preprint arXiv:2410.10885, 2024
2024
Learning protocols for fast and efficient state-to-state transformations in active matter
S Whitelam, C Casert
APS March Meeting Abstracts 2024, K31. 007, 2024
2024
Revealing nonequilibrium phenomena and slow dynamics in many-body systems through machine learning
C Casert
Ghent University, 2023
2023
Towards neural network quantum states with nonabelian symmetries
T Vieijra, C Casert, J Nys, W De Neve, J Haegeman, J Ryckebusch, ...
Bulletin of the American Physical Society 65, 2020
2020
Adversarial machine learning for modeling the distribution of large-scale ultracold atom experiments
C Casert, K Mills, T Vieijra, J Ryckebusch, I Tamblyn
Bulletin of the American Physical Society 65, 2020
2020
Discriminative and generative machine learning for spin systems based on physically interpretable features
C Casert, K Mills, J Nys, J Ryckebusch, I Tamblyn, T Vieijra
StatPhys 27 Main Conference, 2019
2019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20