From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers K Choromanski, H Lin, H Chen, T Zhang, A Sehanobish, V Likhosherstov, ... ICML 2022, 2022 | 41* | 2022 |
Learning prediction intervals for regression: Generalization and calibration H Chen, Z Huang, H Lam, H Qian, H Zhang AISTATS 2021, 2021 | 26 | 2021 |
Hybrid random features K Choromanski, H Chen, H Lin, Y Ma, A Sehanobish, D Jain, MS Ryoo, ... ICLR 2022, 2021 | 24 | 2021 |
Demystifying orthogonal monte carlo and beyond H Lin, H Chen, KM Choromanski, T Zhang, C Laroche NeurIPS 2022, 2020 | 8 | 2020 |
Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning H Zhao, H Chen, J Zhang, DD Yao, W Tang arXiv preprint arXiv:2502.01819, 2025 | 4* | 2025 |
MallowsPO: Fine-Tune Your LLM with Preference Dispersions H Chen, H Zhao, H Lam, D Yao, W Tang ICLR 2025, 2024 | 4 | 2024 |
Pseudo-bayesian optimization H Chen, H Lam arXiv preprint arXiv:2310.09766, 2023 | 4 | 2023 |
Constrained Reinforcement Learning via Policy Splitting H Chen, H Lam, F Li, A Meisami ACML 2020, 209-224, 2020 | 2 | 2020 |
Calibrating over-parametrized simulation models: A framework via eligibility set Y Bai, T Balch, H Chen, D Dervovic, H Lam, S Vyetrenko arXiv preprint arXiv:2105.12893, 2021 | 1 | 2021 |
Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate F Li, H Chen, J Lin, A Gupta, X Tan, G Xu, Y Nevmyvaka, A Capponi, ... arXiv preprint arXiv:2412.11257, 2024 | | 2024 |