Follow
Haoxian Chen
Title
Cited by
Cited by
Year
From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers
K Choromanski, H Lin, H Chen, T Zhang, A Sehanobish, V Likhosherstov, ...
ICML 2022, 2022
41*2022
Learning prediction intervals for regression: Generalization and calibration
H Chen, Z Huang, H Lam, H Qian, H Zhang
AISTATS 2021, 2021
262021
Hybrid random features
K Choromanski, H Chen, H Lin, Y Ma, A Sehanobish, D Jain, MS Ryoo, ...
ICLR 2022, 2021
242021
Demystifying orthogonal monte carlo and beyond
H Lin, H Chen, KM Choromanski, T Zhang, C Laroche
NeurIPS 2022, 2020
82020
Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning
H Zhao, H Chen, J Zhang, DD Yao, W Tang
arXiv preprint arXiv:2502.01819, 2025
4*2025
MallowsPO: Fine-Tune Your LLM with Preference Dispersions
H Chen, H Zhao, H Lam, D Yao, W Tang
ICLR 2025, 2024
42024
Pseudo-bayesian optimization
H Chen, H Lam
arXiv preprint arXiv:2310.09766, 2023
42023
Constrained Reinforcement Learning via Policy Splitting
H Chen, H Lam, F Li, A Meisami
ACML 2020, 209-224, 2020
22020
Calibrating over-parametrized simulation models: A framework via eligibility set
Y Bai, T Balch, H Chen, D Dervovic, H Lam, S Vyetrenko
arXiv preprint arXiv:2105.12893, 2021
12021
Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
F Li, H Chen, J Lin, A Gupta, X Tan, G Xu, Y Nevmyvaka, A Capponi, ...
arXiv preprint arXiv:2412.11257, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–10