Follow
Frantzeska Lavda
Title
Cited by
Cited by
Year
Continual Classification Learning Using Generative Models
F Lavda, J Ramapuram, M Gregorova, A Kalousis
32nd Conference on Neural Information Processing Systems (NIPS 2018 …, 2018
622018
Variational Saccading: Efficient Inference for Large Resolution Images
J Ramapuram, M Diephuis, L Frantzeska, R Webb, A Kalousis
BMVC 2019 & Bayesian Deep Learning Workshop Neurips, 2018, 2018
92018
Data-dependent conditional priors for unsupervised learning of multimodal data
F Lavda, M Gregorová, A Kalousis
Entropy 22 (8), 888, 2020
52020
Improving VAE generations of multimodal data through data-dependent conditional priors
F Lavda, M Gregorová, A Kalousis
European Conference of Artificial Intelligence, ECAI 2020, 1254-1261, 2019
52019
Improving VAE Generations of Multimodal Data Through Data-Dependent Conditional Priors
F Lavda, M Gregorová, A Kalousis
ECAI 2020, 1254-1261, 2020
22020
Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation
F Lavda, A Kalousis
Entropy 25 (12), 1659, 2023
12023
Back translation variational autoencoders for OOD generation
F Lavda, A Kalousis
ICLR 2023 Workshop on Domain Generalization, 2023
12023
GLAD: Improving Latent Graph Generative Modeling with Simple Quantization
VK Nguyen, Y Boget, F Lavda, A Kalousis
arXiv preprint arXiv:2403.16883, 2024
2024
Discrete Latent Graph Generative Modeling with Diffusion Bridges
VK Nguyen, Y Boget, F Lavda, A Kalousis
arXiv preprint arXiv:2403.16883, 2024
2024
Discrete Latent Graph Generative Modeling with Diffusion Bridges
Y Boget, F Lavda, A Kalousis
CoRR, 2024
2024
Improving the capabilities of Variational Autoencoder Models by exploring their latent space
F Lavda
Université de Genève, 2024
2024
Variational saccading
J Ramapuram, M Diephuis, F Lavda, R Webb, A Kalousis
Proceedings of the 30th British Machine Vision Conference, 2019
2019
GLAD: Improving Latent Graph Generative Modeling with Simple Quantization
Y Boget, F Lavda, A Kalousis
ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative …, 0
A Study of Recurrent neural networks (RNNs) in univariate and multivariate time series
F Lavda
The system can't perform the operation now. Try again later.
Articles 1–14