Classifying Metaheuristics: Towards a unified multi-level classification system H Stegherr, M Heider, J Hähner Natural Computing 21 (2), 155-171, 2022 | 81 | 2022 |
Knowledge extraction via decentralized knowledge graph aggregation R Nordsieck, M Heider, A Winschel, J Hähner 2021 IEEE 15th International Conference on Semantic Computing (ICSC), 92-99, 2021 | 14 | 2021 |
Robot gardens: an augmented reality prototype for plant-robot biohybrid systems S von Mammen, H Hamann, M Heider Proceedings of the 22nd ACM Conference on Virtual Reality Software and …, 2016 | 13 | 2016 |
A Metaheuristic Perspective on Learning Classifier Systems M Heider, D Pätzel, H Stegherr, J Hähner Metaheuristics for Machine Learning: New Advances and Tools, 73-98, 2022 | 12 | 2022 |
Separating rule discovery and global solution composition in a learning classifier system M Heider, H Stegherr, J Wurth, R Sraj, J Hähner Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2022 | 12 | 2022 |
Learning classifier systems for self-explaining socio-technical-systems M Heider, H Stegherr, R Nordsieck, J Hähner arXiv preprint arXiv:2207.02300, 2022 | 12 | 2022 |
An overview of LCS research from 2020 to 2021 D Pätzel, M Heider, ARM Wagner Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2021 | 9 | 2021 |
Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System M Heider, H Stegherr, J Wurth, R Sraj, J Hähner Bioinspired Optimization Methods and Their Applications: 10th International …, 2022 | 7 | 2022 |
Comparing different metaheuristics for model selection in a supervised learning classifier system J Wurth, M Heider, H Stegherr, R Sraj, J Hähner Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2022 | 7 | 2022 |
Towards a Pittsburgh-style LCS for learning manufacturing machinery parametrizations M Heider, D Pätzel, J Hähner Proceedings of the 2020 Genetic and Evolutionary Computation Conference …, 2020 | 7 | 2020 |
Assessing Model Requirements for Explainable AI: A Template and Exemplary Case Study M Heider, H Stegherr, R Nordsieck, J Hähner Artificial Life 29 (4), 468-486, 2023 | 6 | 2023 |
An overview of LCS research from 2021 to 2022 M Heider, D Pätzel, ARM Wagner Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2022 | 6 | 2022 |
Towards automated parameter optimisation of machinery by persisting expert knowledge R Nordsieck, M Heider, A Angerer, J Hähner | 6 | 2019 |
Design of large-scale metaheuristic component studies H Stegherr, M Heider, L Luley, J Hähner Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2021 | 5 | 2021 |
Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study N Kemper, M Heider, D Pietruschka, J Hähner Energy Systems, 1-35, 2023 | 4 | 2023 |
Approaches for Rule Discovery in a Learning Classifier System M Heider, H Stegherr, D Pätzel, R Sraj, J Wurth, B Volger, J Hähner International Joint Conference on Computational Intelligence - ECTA, 39-49, 2022 | 4 | 2022 |
Discovering Rules for Rule-Based Machine Learning with the Help of Novelty Search M Heider, H Stegherr, D Pätzel, R Sraj, J Wurth, B Volger, J Hähner SN Computer Science 4 (6), 778, 2023 | 3 | 2023 |
Towards Principled Synthetic Benchmarks for Explainable Rule Set Learning Algorithms D Pätzel, M Heider, J Hähner Proceedings of the Companion Conference on Genetic and Evolutionary …, 2023 | 3 | 2023 |
Reliability-Based Aggregation of Heterogeneous Knowledge to Assist Operators in Manufacturing R Nordsieck, M Heider, A Hoffmann, J Hähner 2022 IEEE 16th International Conference on Semantic Computing (ICSC), 131-138, 2022 | 3 | 2022 |
SupRB in the context of rule-based machine learning methods: A comparative study M Heider, H Stegherr, R Sraj, D Pätzel, J Wurth, J Hähner Applied Soft Computing 147, 110706, 2023 | 2 | 2023 |