Follow
Keno Fischer
Keno Fischer
JuliaHub, Inc.
Verified email at juliahub.com
Title
Cited by
Cited by
Year
Fashionable modelling with flux
M Innes, E Saba, K Fischer, D Gandhi, MC Rudilosso, NM Joy, T Karmali, ...
arXiv preprint arXiv:1811.01457, 2018
2472018
A differentiable programming system to bridge machine learning and scientific computing
M Innes, A Edelman, K Fischer, C Rackauckas, E Saba, VB Shah, ...
arXiv preprint arXiv:1907.07587, 2019
2342019
Highly-scalable, physics-informed GANs for learning solutions of stochastic PDEs
L Yang, S Treichler, T Kurth, K Fischer, D Barajas-Solano, J Romero, ...
2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), 1-11, 2019
562019
Cataloging the visible universe through Bayesian inference in Julia at petascale
J Regier, K Fischer, K Pamnany, A Noack, J Revels, M Lam, S Howard, ...
Journal of Parallel and Distributed Computing 127, 89-104, 2019
422019
Generalized physics-informed learning through language-wide differentiable programming
C Rackauckas, A Edelman, K Fischer, M Innes, E Saba, VB Shah, ...
402021
A differentiable programming system to bridge machine learning and scientific computing.(2019)
M Innes, A Edelman, K Fischer, C Rackauckas, E Saba, VB Shah, ...
arXiv preprint arXiv:1907.07587, 1907
191907
Automatic full compilation of Julia programs and ML models to cloud TPUs
K Fischer, E Saba
arXiv preprint arXiv:1810.09868, 2018
162018
Fashionable modelling with flux. CoRR abs/1811.01457 (2018)
M Innes, E Saba, K Fischer, D Gandhi, MC Rudilosso, NM Joy, T Karmali, ...
arXiv preprint arXiv:1811.01457, 2018
162018
Fashionable modelling with flux, 2018
M Innes, E Saba, K Fischer, D Gandhi, MC Rudilosso, NM Joy, T Karmali, ...
arXiv preprint arXiv:1811.01457, 1811
151811
A differentiable programming system to bridge machine learning and scientific computing, arXiv
M Innes, A Edelman, K Fischer, C Rackauckas, E Saba, VB Shah, ...
arXiv preprint arXiv:1907.07587, 2019
122019
Fashionable Modelling with Flux, CoRR, abs/1811.01457
M Innes, E Saba, K Fischer, D Gandhi, MC Rudilosso, NM Joy, T Karmali, ...
arXiv preprint arXiv:1811.01457, 2018
102018
Composable and reusable neural surrogates to predict system response of causal model components
R Anantharaman, A Abdelrehim, F Martinuzzi, S Yalburgi, E Saba, ...
AAAI 2022 Workshop on AI for Design and Manufacturing (ADAM), 2021
72021
CoRR abs/1811.01457 (2018)
M Innes, E Saba, K Fischer, D Gandhi, MC Rudilosso, NM Joy, T Karmali, ...
arXiv preprint arXiv:1811.01457, 0
5
A differentiable programming system to bridge machine learning and scientific computing. arXiv 2019
M Innes, A Edelman, K Fischer, C Rackauckas, E Saba, VB Shah, ...
arXiv preprint arXiv:1907.07587, 0
5
Blind adaptive beamforming of narrowband signals using an uncalibrated antenna-array by machine learning
S Schoenbrod, E Saba, M Bazdresch, S Kelly, T Besard, K Fischer
2022 IEEE International Symposium on Phased Array Systems & Technology (PAST …, 2022
32022
Julia e Flux: modernizando o aprendizado de máquina
D Gandhi, M Innes, E Saba, K Fischer, V Shah
Computação Brasil, 41-45, 2019
32019
Flux: Julia machine learning library
M Innes, E Saba, K Fischer, D Gandhi, M Concetto Rudilosso, ...
Astrophysics Source Code Library, ascl: 2110.015, 2021
22021
Compiler systems and methods for accelerated differential algebraic equations (dae) simulation
K Fischer, E Saba, MA Yingbo
US Patent App. 18/766,120, 2025
2025
Calibrating Reception Characteristics of Antenna Elements and RF-Frontend Within a Phased Array Using Machine Learning Techniques
S Schoenbrod, E Saba, M Bazdresch, S Kelly, T Besard, K Fischer
2024 IEEE International Symposium on Phased Array Systems and Technology …, 2024
2024
Compiler transform optimization for non-local functions
K Fischer
US Patent App. 18/216,969, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20