Follow
Amanda Howard
Title
Cited by
Cited by
Year
Multifidelity deep operator networks for data-driven and physics-informed problems
AA Howard, M Perego, GE Karniadakis, P Stinis
Journal of Computational Physics 493, 112462, 2023
81*2023
Learning unknown physics of non-Newtonian fluids
B Reyes, AA Howard, P Perdikaris, AM Tartakovsky
Physical Review Fluids 6 (7), 073301, 2021
672021
A conservative level set method for N-phase flows with a free-energy-based surface tension model
AA Howard, AM Tartakovsky
Journal of Computational Physics 426, 109955, 2021
272021
Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
AA Howard, B Jacob, SH Murphy, A Heinlein, P Stinis
arXiv preprint arXiv:2406.19662, 2024
242024
A hybrid deep neural operator/finite element method for ice-sheet modeling
QZ He, M Perego, AA Howard, GE Karniadakis, P Stinis
Journal of Computational Physics 492, 112428, 2023
192023
Stacked networks improve physics-informed training: applications to neural networks and deep operator networks
AA Howard, SH Murphy, SE Ahmed, P Stinis
arXiv preprint arXiv:2311.06483, 2023
182023
Machine Learning in Heterogeneous Porous Materials
M D'Elia, H Deng, C Fraces, K Garikipati, L Graham-Brady, A Howard, ...
arXiv preprint arXiv:2202.04137, 2022
142022
Physics-informed CoKriging model of a redox flow battery
AA Howard, T Yu, W Wang, AM Tartakovsky
Journal of Power Sources 542, 231668, 2022
122022
A multifidelity approach to continual learning for physical systems
A Howard, Y Fu, P Stinis
Machine Learning: Science and Technology 5 (2), 025042, 2024
82024
Settling of heavy particles in concentrated suspensions of neutrally buoyant particles under uniform shear
A Howard, M Maxey, K Yeo
Fluid Dynamics Research, 2018
82018
Multifidelity domain decomposition-based physics-informed neural networks for time-dependent problems
A Heinlein, AA Howard, D Beecroft, P Stinis
arXiv preprint arXiv:2401.07888, 2024
72024
Simulation study of particle clouds in oscillating shear flow
AA Howard, MR Maxey
Journal of Fluid Mechanics 852, 484-506, 2018
72018
Self-adaptive weights based on balanced residual decay rate for physics-informed neural networks and deep operator networks
W Chen, AA Howard, P Stinis
arXiv preprint arXiv:2407.01613, 2024
62024
Dispersion of a suspension plug in oscillatory pressure-driven flow
FR Cui, AA Howard, MR Maxey, A Tripathi
Physical Review Fluids 2 (9), 094303, 2017
62017
SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks
B Jacob, AA Howard, P Stinis
arXiv preprint arXiv:2411.06286, 2024
52024
Efficient kernel surrogates for neural network-based regression
S Qadeer, A Engel, A Howard, A Tsou, M Vargas, P Stinis, T Chiang
arXiv preprint arXiv:2310.18612, 2023
52023
Physics-Guided Continual Learning for Predicting Emerging Aqueous Organic Redox Flow Battery Material Performance
Y Fu, A Howard, C Zeng, Y Chen, P Gao, P Stinis
ACS Energy Letters 9, 2767-2774, 2024
42024
Machine learning methods for particle stress development in suspension Poiseuille flows
AA Howard, J Dong, R Patel, M D’Elia, MR Maxey, P Stinis
Rheologica Acta 62 (10), 507-534, 2023
42023
Bidisperse suspension balance model
AA Howard, MR Maxey, S Gallier
Physical Review Fluids 7 (12), 124301, 2022
42022
Non-local model for surface tension in fluid-fluid simulations
AA Howard, AM Tartakovsky
Journal of Computational Physics 421, 109732, 2020
42020
The system can't perform the operation now. Try again later.
Articles 1–20