Open source drug discovery with the malaria box compound collection for neglected diseases and beyond WC Van Voorhis, JH Adams, R Adelfio, V Ahyong, MH Akabas, P Alano, ... PLoS pathogens 12 (7), e1005763, 2016 | 318 | 2016 |
Modeling reactivity to biological macromolecules with a deep multitask network TB Hughes, NL Dang, GP Miller, SJ Swamidass ACS central science 2 (8), 529-537, 2016 | 106 | 2016 |
A simple model predicts UGT-mediated metabolism NL Dang, TB Hughes, V Krishnamurthy, SJ Swamidass Bioinformatics 32 (20), 3183-3189, 2016 | 78 | 2016 |
The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors JSS Na Le Dang, Matthew K. Matlock, Tyler B. Hughes J. Chem. Inf. Model., 2020 | 50 | 2020 |
Computationally assessing the bioactivation of drugs by N-dealkylation NL Dang, TB Hughes, GP Miller, SJ Swamidass Chemical research in toxicology 31 (2), 68-80, 2018 | 42 | 2018 |
Computational approach to structural alerts: furans, phenols, nitroaromatics, and thiophenes NL Dang, TB Hughes, GP Miller, SJ Swamidass Chemical research in toxicology 30 (4), 1046-1059, 2017 | 42 | 2017 |
‘Black box’to ‘conversational’machine learning: Ondansetron reduces risk of hospital-acquired venous thromboembolism A Datta, MK Matlock, N Le Dang, T Moulin, KF Woeltje, EL Yanik, ... IEEE Journal of Biomedical and Health Informatics 25 (6), 2204-2214, 2020 | 32 | 2020 |
Learning a local-variable model of aromatic and conjugated systems MK Matlock, NL Dang, SJ Swamidass ACS Central Science 4 (1), 52-62, 2018 | 30 | 2018 |
Lamisil (terbinafine) toxicity: Determining pathways to bioactivation through computational and experimental approaches DA Barnette, MA Davis, NL Dang, AS Pidugu, T Hughes, SJ Swamidass, ... Biochemical pharmacology 156, 10-21, 2018 | 24 | 2018 |
XenoNet: inference and likelihood of intermediate metabolite formation NR Flynn, NL Dang, MD Ward, SJ Swamidass Journal of chemical information and modeling 60 (7), 3431-3449, 2020 | 20 | 2020 |
Deep learning long-range information in undirected graphs with wave networks MK Matlock, A Datta, N Le Dang, K Jiang, SJ Swamidass 2019 International Joint Conference on Neural Networks (IJCNN), 1-8, 2019 | 20 | 2019 |
Modeling the bioactivation and subsequent reactivity of drugs TB Hughes, N Flynn, NL Dang, SJ Swamidass Chemical research in toxicology 34 (2), 584-600, 2021 | 15 | 2021 |
Metabolic forest: predicting the diverse structures of drug metabolites TB Hughes, NL Dang, A Kumar, NR Flynn, SJ Swamidass Journal of chemical information and modeling 60 (10), 4702-4716, 2020 | 14 | 2020 |
Deep learning coordinate-free quantum chemistry MK Matlock, M Hoffman, NL Dang, DL Folmsbee, LA Langkamp, ... The Journal of Physical Chemistry A 125 (40), 8978-8986, 2021 | 8 | 2021 |
Na Le Dang, Grover P TB Hughes Miller, and S. Joshua Swamidass. Modeling Reactivity to Biological …, 2016 | 7 | 2016 |
Predictors of humoral response to SARS-CoV-2 mRNA vaccine BNT162b2 in patients receiving maintenance dialysis T Li, S Gandra, KA Reske, MA Olsen, S Bommarito, C Miller, KG Hock, ... Antimicrobial Stewardship & Healthcare Epidemiology 2 (1), e48, 2022 | 4 | 2022 |
Na Le Dang, Kevin Jiang, and S Joshua Swamidass. Deep learning long-range information in undirected graphs with wave networks MK Matlock, A Datta IJCNN, 0 | 4 | |
SARS-CoV-2 Infection Risk Factors among Maintenance Hemodialysis Patients and Health Care Personnel In Outpatient Hemodialysis Centers S Gandra, T Li, KA Reske, N Le Dang, CW Farnsworth, KG Hock, C Miller, ... Kidney360 2 (6), 996-1001, 2021 | 2 | 2021 |
High Energy Channeling and Malleable Transition States: Molecular Dynamics Simulations and Free Energy Landscapes for the Thermal Unfolding of Protein U1A and 13 Mutants NL Dang, AM Baranger, DL Beveridge Biomolecules 12 (7), 940, 2022 | 1 | 2022 |
Predictors of humoral response to SARS-CoV-2 mRNA vaccine BNT162b2 in patients receiving maintenance dialysis L Tingting, S Gandra, KA Reske, MA Olsen, S Bommarito, C Miller, ... | | 2022 |