Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions J Zámborszky, B Szikriszt, JZ Gervai, O Pipek, Á Póti, M Krzystanek, ... Oncogene 36 (6), 746-755, 2017 | 137 | 2017 |
Circadian rhythms synchronize mitosis in Neurospora crassa CI Hong, J Zámborszky, M Baek, L Labiscsak, K Ju, H Lee, LF Larrondo, ... Proceedings of the National Academy of Sciences 111 (4), 1397-1402, 2014 | 96 | 2014 |
Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control J Zámborszky, CI Hong, A Csikasz Nagy Journal of biological rhythms 22 (6), 542-553, 2007 | 73 | 2007 |
BRCA1 deficiency specific base substitution mutagenesis is dependent on translesion synthesis and regulated by 53BP1 D Chen, JZ Gervai, Á Póti, E Németh, Z Szeltner, B Szikriszt, Z Gyüre, ... Nature communications 13 (1), 226, 2022 | 34 | 2022 |
Erratum: Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions J Zamborszky, B Szikriszt, JZ Gervai, O Pipek, A Poti, M Krzystanek, ... Oncogene 36 (35), 5085-5086, 2017 | 33 | 2017 |
Cooperative interactions between p53 and NFκB enhance cell plasticity A Bisio, J Zámborszky, S Zaccara, M Lion, T Tebaldi, V Sharma, ... Oncotarget 5 (23), 12111, 2014 | 31 | 2014 |
A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance JZ Gervai, J Gálicza, Z Szeltner, J Zámborszky, D Szüts DNA repair 54, 46-54, 2017 | 20 | 2017 |
Minimum criteria for DNA damage-induced phase advances in circadian rhythms CI Hong, J Zámborszky, A Csikász-Nagy PLoS computational biology 5 (5), e1000384, 2009 | 18 | 2009 |
Molecular Network Dynamics of Cell Cycle Control: Transitions to Start and Finish A Csikász-Nagy, A Palmisano, J Zámborszky Cell Cycle Synchronization: Methods and Protocols, 277-291, 2011 | 17 | 2011 |
Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock J Zámborszky, A Csikász-Nagy, CI Hong Fungal Genetics and Biology 71, 52-57, 2014 | 15 | 2014 |
Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish A Palmisano, J Zámborszky, C Oguz, A Csikász-Nagy Cell Cycle Synchronization: Methods and Protocols, 331-349, 2017 | 13 | 2017 |
Formal Methods in Molecular Biology (Dagstuhl Seminar 11151) R Breitling, AM Uhrmacher, FJ Bruggeman, C Priami Dagstuhl Reports 1 (4), 41-64, 2011 | 3 | 2011 |
BlenX-based compositional modeling of complex reaction mechanisms J Zámborszky, C Priami arXiv preprint arXiv:1002.4065, 2010 | 3 | 2010 |
Compositional modeling of biological systems J Zámborszky Università degli studi di Trento, 2010 | 2 | 2010 |
Functional crosstalk between the p53 and NF-kB transcription factors. A Bisio, J Zámborszky, S Zaccara, M Lion, T Tebaldi, Y Ciribilli, A Inga Cancer Research 73 (8_Supplement), 746-746, 2013 | 1 | 2013 |
Analyzing various models of Circadian Clock and Cell Cycle coupling A Csikász-Nagy, A Faure, R Larcher, P Lecca, I Mura, F Jordan, ... Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2009 | 1 | 2009 |
Connection between the cell cycle and the circadian rhythm in mammalian cells J Zamborszky, CI Hong, A Csikasz-Nagy FEBS JOURNAL 274, 248-248, 2007 | 1 | 2007 |
Connection between the cell cycle and the circadian clock in mammalian cells J Zámborszky, CI Hong, A Csikász-Nagy ModellingComplex BiologicalSystems, 111, 2007 | 1 | 2007 |
Modeling the cell cycle J Zámborszky, A Csikász-Nagy UNESCO Encyclopedia of Life Support Systems, 0 | 1 | |
Effects of DNA damage on the cell cycle through the circadian clock Z Bujtár, J Zámborszky, T Matsu-ura, CI Hong, A Csikász-Nagy FEBS OPEN BIO 11, 495-495, 2021 | | 2021 |