LLM+P: Empowering Large Language Models with Optimal Planning Proficiency B Liu, Y Jiang, X Zhang, Q Liu, S Zhang, J Biswas, P Stone arXiv preprint arXiv:2304.11477, 2023 | 325 | 2023 |
Conflict-averse gradient descent for multi-task learning B Liu, X Liu, X Jin, P Stone, Q Liu Advances in Neural Information Processing Systems 34, 18878-18890, 2021 | 290 | 2021 |
Motion planning and control for mobile robot navigation using machine learning: a survey X Xiao, B Liu, G Warnell, P Stone Autonomous Robots 46 (5), 569-597, 2022 | 236 | 2022 |
A lifelong learning approach to mobile robot navigation B Liu, X Xiao, P Stone IEEE Robotics and Automation Letters 6 (2), 1090-1096, 2021 | 107* | 2021 |
Appld: Adaptive planner parameter learning from demonstration X Xiao, B Liu, G Warnell, J Fink, P Stone IEEE Robotics and Automation Letters 5 (3), 4541-4547, 2020 | 85 | 2020 |
Human gaze assisted artificial intelligence: A review R Zhang, A Saran, B Liu, Y Zhu, S Guo, S Niekum, D Ballard, M Hayhoe IJCAI: Proceedings of the Conference 2020, 4951, 2020 | 73 | 2020 |
BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach B Liu, M Ye, S Wright, P Stone Advances in Neural Information Processing Systems, 2022 | 66 | 2022 |
Appl: Adaptive planner parameter learning X Xiao, Z Wang, Z Xu, B Liu, G Warnell, G Dhamankar, A Nair, P Stone Robotics and Autonomous Systems 154, 104132, 2022 | 61 | 2022 |
Applr: Adaptive planner parameter learning from reinforcement Z Xu, G Dhamankar, A Nair, X Xiao, G Warnell, B Liu, Z Wang, P Stone 2021 IEEE international conference on robotics and automation (ICRA), 6086-6092, 2021 | 58 | 2021 |
Libero: Benchmarking knowledge transfer for lifelong robot learning B Liu, Y Zhu, C Gao, Y Feng, Q Liu, Y Zhu, P Stone Advances in Neural Information Processing Systems 36, 2024 | 56 | 2024 |
Appli: Adaptive planner parameter learning from interventions Z Wang, X Xiao, B Liu, G Warnell, P Stone 2021 IEEE international conference on robotics and automation (ICRA), 6079-6085, 2021 | 53 | 2021 |
Firefly neural architecture descent: a general approach for growing neural networks L Wu, B Liu, P Stone, Q Liu Advances in Neural Information Processing Systems 33, 2021 | 53 | 2021 |
Toward agile maneuvers in highly constrained spaces: Learning from hallucination X Xiao, B Liu, G Warnell, P Stone IEEE Robotics and Automation Letters 6 (2), 1503-1510, 2021 | 52 | 2021 |
Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team Composition B Liu, Q Liu, P Stone, A Garg, Y Zhu, A Anandkumar International Conference on Machine Learning 2021, 2021 | 47 | 2021 |
Continual Learning and Private Unlearning B Liu, Q Liu, P Stone Proceedings of The 1st Conference on Lifelong Learning Agents, PMLR 199:243 …, 2022 | 46 | 2022 |
Real-world challenges for multi-agent reinforcement learning in grid-interactive buildings K Nweye, B Liu, P Stone, Z Nagy Energy and AI 10, 100202, 2022 | 44 | 2022 |
Agile robot navigation through hallucinated learning and sober deployment X Xiao, B Liu, P Stone 2021 IEEE international conference on robotics and automation (ICRA), 7316-7322, 2021 | 37 | 2021 |
Benchmarking reinforcement learning techniques for autonomous navigation Z Xu, B Liu, X Xiao, A Nair, P Stone 2023 IEEE International Conference on Robotics and Automation (ICRA), 9224-9230, 2023 | 36 | 2023 |
Predicting pregnancy using large-scale data from a women's health tracking mobile application B Liu, S Shi, Y Wu, D Thomas, L Symul, E Pierson, J Leskovec The world wide web conference, 2999-3005, 2019 | 36 | 2019 |
Machine versus human attention in deep reinforcement learning tasks SS Guo, R Zhang, B Liu, Y Zhu, D Ballard, M Hayhoe, P Stone Advances in Neural Information Processing Systems 34, 25370-25385, 2021 | 26* | 2021 |