Grothendieck rings for Lie superalgebras and the Duflo–Serganova functor C Hoyt, S Reif Algebra & Number Theory 12 (9), 2167-2184, 2018 | 13 | 2018 |
The Kac–Wakimoto character formula for the general linear Lie superalgebra M Chmutov, C Hoyt, S Reif Algebra & Number Theory 9 (6), 1419-1452, 2015 | 12 | 2015 |
Grothendieck rings of periplectic Lie superalgebras MS Im, S Reif, V Serganova arXiv preprint arXiv:1906.01948, 2019 | 11 | 2019 |
Denominator identities for the periplectic Lie superalgebra C Hoyt, MS Im, S Reif Journal of Algebra 567, 459-474, 2021 | 9 | 2021 |
Simplicity of vacuum modules over affine Lie superalgebras C Hoyt, S Reif Journal of Algebra 321 (10), 2861-2874, 2009 | 9 | 2009 |
Grothendieck Rings of Queer Lie Superalgebras S Reif arXiv preprint arXiv:2107.02219, 2021 | 7 | 2021 |
On tensor products of irreducible integrable representations S Reif, R Venkatesh Journal of Algebra 592, 402-423, 2022 | 5 | 2022 |
Denominator Identity for twisted affine Lie superalgebras S Reif International Mathematics Research Notices 2014 (15), 4146-4178, 2014 | 5 | 2014 |
A denominator identity for affine Lie superalgebras with zero dual Coxeter number M Gorelik, S Reif Algebra & Number Theory 6 (5), 1043-1059, 2012 | 5 | 2012 |
A Weyl-Type character formula for PDC modules of gl (m| n) M Chmutov, C Hoyt, S Reif arXiv preprint arXiv:1407.0198, 2014 | 4 | 2014 |
A superdimension formula for 𝔤 𝔩 (m| n)-modules M Chmutov, R Karpman, S Reif Journal of Algebra and Its Applications 15 (05), 1650080, 2016 | 1 | 2016 |
Denominator identities for the periplectic Lie superalgebra MS Im, C Hoyt, S Reif 2021 Spring Southeastern Virtual Sectional Meeting, 2021 | | 2021 |
Thesis for the degree S Reif Weizmann Institute of Science, 2011 | | 2011 |