Tensorflow quantum: A software framework for quantum machine learning M Broughton, G Verdon, T McCourt, AJ Martinez, JH Yoo, SV Isakov, ... arXiv preprint arXiv:2003.02989, 2020 | 439 | 2020 |
Reinforcement learning with quantum variational circuit O Lockwood, M Si Proceedings of the AAAI conference on artificial intelligence and …, 2020 | 139 | 2020 |
A review of uncertainty for deep reinforcement learning O Lockwood, M Si Proceedings of the AAAI Conference on Artificial Intelligence and …, 2022 | 53 | 2022 |
Playing atari with hybrid quantum-classical reinforcement learning O Lockwood, M Si NeurIPS 2020 workshop on pre-registration in machine learning, 285-301, 2021 | 27 | 2021 |
QuantumCircuitOpt: An open-source framework for provably optimal quantum circuit design H Nagarajan, O Lockwood, C Coffrin 2021 IEEE/ACM Second International Workshop on Quantum Computing Software …, 2021 | 15 | 2021 |
An empirical review of optimization techniques for quantum variational circuits O Lockwood arXiv preprint arXiv:2202.01389, 2022 | 13 | 2022 |
Optimizing quantum variational circuits with deep reinforcement learning O Lockwood arXiv preprint arXiv:2109.03188, 2021 | 5 | 2021 |
Quantum dynamical hamiltonian monte carlo O Lockwood, P Weiss, F Aronshtein, G Verdon Physical Review Research 6 (3), 033142, 2024 | 1 | 2024 |
In Defense of the Paper O Lockwood arXiv preprint arXiv:2104.08359, 2021 | | 2021 |