Follow
Janek Thomas
Title
Cited by
Cited by
Year
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
B Bischl, M Binder, M Lang, T Pielok, J Richter, S Coors, J Thomas, ...
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13 (2 …, 2023
4822023
An Open Source AutoML Benchmark
P Gijsbers, E LeDell, J Thomas, S Poirier, B Bischl, J Vanschoren
ICML AutoML Workshop, 2019
3112019
mlrMBO: A modular framework for model-based optimization of expensive black-box functions
B Bischl, J Richter, J Bossek, D Horn, J Thomas, M Lang
arXiv preprint arXiv:1703.03373, 2017
2112017
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
F Pargent, F Pfisterer, J Thomas, B Bischl
Computational Statistics 37 (5), 2671-2692, 2022
132*2022
Gradient boosting for distributional regression: faster tuning and improved variable selection via noncyclical updates
J Thomas, A Mayr, B Bischl, M Schmid, A Smith, B Hofner
Statistics and Computing 28, 673-687, 2018
862018
Amlb: an automl benchmark
P Gijsbers, MLP Bueno, S Coors, E LeDell, S Poirier, J Thomas, B Bischl, ...
Journal of Machine Learning Research 25 (101), 1-65, 2024
672024
Multi-objective hyperparameter tuning and feature selection using filter ensembles
M Binder, J Moosbauer, J Thomas, B Bischl
Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 471-479, 2020
622020
Automatic Gradient Boosting
J Thomas, S Coors, B Bischl
ICML AutoML Workshop, 2018
352018
Probing for sparse and fast variable selection with model-based boosting
J Thomas, T Hepp, A Mayr, B Bischl
Computational and Mathematical Methods in Medicine 2017, 8 pages, 2017
352017
Multi-objective hyperparameter optimization in machine learning—An overview
F Karl, T Pielok, J Moosbauer, F Pfisterer, S Coors, M Binder, L Schneider, ...
ACM Transactions on Evolutionary Learning and Optimization 3 (4), 1-50, 2023
282023
Multi-Objective Hyperparameter Optimization--An Overview
F Karl, T Pielok, J Moosbauer, F Pfisterer, S Coors, M Binder, L Schneider, ...
arXiv preprint arXiv:2206.07438, 2022
272022
Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning
J Goschenhofer, FMJ Pfister, KA Yuksel, B Bischl, U Fietzek, J Thomas
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2019
242019
Deep semi-supervised learning for time-series classification
J Goschenhofer
Deep Learning Applications, Volume 4, 361-384, 2022
212022
Multi-objective automatic machine learning with autoxgboostmc
F Pfisterer, S Coors, J Thomas, B Bischl
arXiv preprint arXiv:1908.10796, 2019
212019
Fusionkit: a generic toolkit for skeleton, marker and rigid-body tracking
M Rietzler, F Geiselhart, J Thomas, E Rukzio
Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive …, 2016
202016
Automatic exploration of machine learning experiments on openml
D Kühn, P Probst, J Thomas, B Bischl
arXiv preprint arXiv:1806.10961, 2018
162018
RAMBO: Resource-aware model-based optimization with scheduling for heterogeneous runtimes and a comparison with asynchronous model-based optimization
H Kotthaus, J Richter, A Lang, J Thomas, B Bischl, P Marwedel, ...
Learning and Intelligent Optimization: 11th International Conference, LION …, 2017
162017
Towards human centered AutoML
F Pfisterer, J Thomas, B Bischl
arXiv preprint arXiv:1911.02391, 2019
142019
Meta learning for defaults: Symbolic defaults
JN van Rijn, F Pfisterer, J Thomas, A Muller, B Bischl, J Vanschoren
Neural Information Processing Workshop on Meta-Learning, 2018
122018
Structured verification of machine learning models in industrial settings
SR Kaminwar, J Goschenhofer, J Thomas, I Thon, B Bischl
Big Data 11 (3), 181-198, 2023
92023
The system can't perform the operation now. Try again later.
Articles 1–20