Follow
Mingchen Li
Mingchen Li
University of Michigan, Phd candidate
Verified email at umich.edu - Homepage
Title
Cited by
Cited by
Year
Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks
M Li, M Soltanolkotabi, S Oymak
International conference on artificial intelligence and statistics, 4313-4324, 2020
4142020
Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian
S Oymak, Z Fabian, M Li, M Soltanolkotabi
arXiv preprint arXiv:1906.05392, 2019
852019
FedNest: Federated bilevel, minimax, and compositional optimization
DA Tarzanagh, M Li, C Thrampoulidis, S Oymak
International Conference on Machine Learning, 21146-21179, 2022
712022
Autobalance: Optimized loss functions for imbalanced data
M Li, X Zhang, C Thrampoulidis, J Chen, S Oymak
Advances in Neural Information Processing Systems 34, 3163-3177, 2021
622021
Robust 3-d human detection in complex environments with a depth camera
L Tian, M Li, Y Hao, J Liu, G Zhang, YQ Chen
IEEE Transactions on Multimedia 20 (9), 2249-2261, 2018
452018
On the Marginal Benefit of Active Learning: Does Self-Supervision Eat Its Cake?
YC Chan, M Li, S Oymak
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
282021
Generalization guarantees for neural architecture search with train-validation split
S Oymak, M Li, M Soltanolkotabi
International Conference on Machine Learning, 8291-8301, 2021
192021
Reliably detecting humans in crowded and dynamic environments using RGB-D camera
L Tian, G Zhang, M Li, J Liu, YQ Chen
2016 IEEE International Conference on Multimedia and Expo (ICME), 1-6, 2016
112016
Robust human detection with super-pixel segmentation and random ferns classification using RGB-D camera
L Tian, M Li, G Zhang, J Zhao, YQ Chen
2017 IEEE International Conference on Multimedia and Expo (ICME), 1542-1547, 2017
92017
Provable and efficient continual representation learning
Y Li, M Li, MS Asif, S Oymak
arXiv preprint arXiv:2203.02026, 2022
82022
Fedyolo: Augmenting federated learning with pretrained transformers
X Zhang, M Li, X Chang, J Chen, AK Roy-Chowdhury, AT Suresh, ...
arXiv preprint arXiv:2307.04905, 2023
72023
Exploring weight importance and hessian bias in model pruning
M Li, Y Sattar, C Thrampoulidis, S Oymak
arXiv preprint arXiv:2006.10903, 2020
72020
Generalization, adaptation and low-rank representation in neural networks
S Oymak, Z Fabian, M Li, M Soltanolkotabi
2019 53rd Asilomar Conference on Signals, Systems, and Computers, 581-585, 2019
52019
Class-attribute Priors: Adapting Optimization to Heterogeneity and Fairness Objective
X Zhang, M Li, J Chen, C Thrampoulidis, S Oymak
AAAI 2024, 2024
12024
Selective Attention: Enhancing Transformer through Principled Context Control
X Zhang, X Chang, M Li, A Roy-Chowdhury, J Chen, S Oymak
arXiv preprint arXiv:2411.12892, 2024
2024
On the Power of Convolution Augmented Transformer
M Li, X Zhang, Y Huang, S Oymak
arXiv preprint arXiv:2407.05591, 2024
2024
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
DA Tarzanagh, M Li, P Sharma, S Oymak
arXiv preprint arXiv:2306.01648, 2023
2023
Augmenting Federated Learning with Pretrained Transformers
X Zhang, M Li, X Chang, J Chen, A Roy-Chowdhury, A Suresh, S Oymak
International Workshop on Federated Learning in the Age of Foundation Models …, 0
The system can't perform the operation now. Try again later.
Articles 1–18