Follow
David Heckmann
David Heckmann
Unknown affiliation
Verified email at hhu.de
Title
Cited by
Cited by
Year
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria
J Mallmann, D Heckmann, A Bräutigam, MJ Lercher, APM Weber, ...
Elife 3, e02478, 2014
2162014
Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape
D Heckmann, S Schulze, A Denton, U Gowik, P Westhoff, APM Weber, ...
Cell 153 (7), 1579-1588, 2013
1992013
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
D Heckmann, CJ Lloyd, N Mih, Y Ha, DC Zielinski, ZB Haiman, ...
Nature communications 9 (1), 5252, 2018
1962018
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
ES Kavvas, E Catoiu, N Mih, JT Yurkovich, Y Seif, N Dillon, D Heckmann, ...
Nature communications 9 (1), 4306, 2018
1892018
Machine learning techniques for predicting crop photosynthetic capacity from leaf reflectance spectra
D Heckmann, U Schlüter, APM Weber
Molecular plant 10 (6), 878-890, 2017
1082017
Cellular responses to reactive oxygen species are predicted from molecular mechanisms
L Yang, N Mih, A Anand, JH Park, J Tan, JT Yurkovich, JM Monk, CJ Lloyd, ...
Proceedings of the National Academy of Sciences 116 (28), 14368-14373, 2019
1032019
A biochemically-interpretable machine learning classifier for microbial GWAS
ES Kavvas, L Yang, JM Monk, D Heckmann, BO Palsson
Nature communications 11 (1), 2580, 2020
782020
Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers
D Heckmann, A Campeau, CJ Lloyd, PV Phaneuf, Y Hefner, ...
Proceedings of the National Academy of Sciences 117 (37), 23182-23190, 2020
762020
Deep learning allows genome-scale prediction of Michaelis constants from structural features
A Kroll, MKM Engqvist, D Heckmann, MJ Lercher
PLoS biology 19 (10), e3001402, 2021
742021
Independent component analysis recovers consistent regulatory signals from disparate datasets
AV Sastry, A Hu, D Heckmann, S Poudel, E Kavvas, BO Palsson
PLoS computational biology 17 (2), e1008647, 2021
402021
C4 photosynthesis evolution: the conditional Mt. Fuji
D Heckmann
Current Opinion in Plant Biology 31, 149-154, 2016
272016
Causal mutations from adaptive laboratory evolution are outlined by multiple scales of genome annotations and condition-specificity
PV Phaneuf, JT Yurkovich, D Heckmann, M Wu, TE Sandberg, ZA King, ...
BMC genomics 21, 1-16, 2020
252020
BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana
JA Kleinmanns, N Schatlowski, D Heckmann, D Schubert
Frontiers in Plant Science 8, 1530, 2017
212017
Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants
Y Li, D Heckmann, MJ Lercher, VG Maurino
Journal of Experimental Botany 68 (2), 117-125, 2017
192017
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun 9: 4306
ES Kavvas, E Catoiu, N Mih, JT Yurkovich, Y Seif, N Dillon, D Heckmann, ...
172018
A generic avian physiologically-based kinetic (PBK) model and its application in three bird species
V Baier, A Paini, S Schaller, CG Scanes, AJ Bone, M Ebeling, TG Preuss, ...
Environment international 169, 107547, 2022
162022
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
D Heckmann, DC Zielinski, BO Palsson
Nature Communications 9 (1), 5270, 2018
152018
Quantitative comparison of avian and mammalian physiologies for parameterization of physiologically based kinetic models
CG Scanes, J Witt, M Ebeling, S Schaller, V Baier, AJ Bone, TG Preuss, ...
Frontiers in physiology 13, 858386, 2022
142022
Energetic basis for bird ontogeny and egg-laying applied to the bobwhite quail
N Marn, K Lika, S Augustine, B Goussen, M Ebeling, D Heckmann, ...
Conservation physiology 10 (1), coac063, 2022
132022
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat Commun. 2018; 9 (1): 5252
D Heckmann, CJ Lloyd, N Mih, Y Ha, DC Zielinski, ZB Haiman, ...
13
The system can't perform the operation now. Try again later.
Articles 1–20