Παρακολούθηση
Hadi Meidani
Hadi Meidani
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα illinois.edu - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Efficient training of physics‐informed neural networks via importance sampling
MA Nabian, RJ Gladstone, H Meidani
Computer‐Aided Civil and Infrastructure Engineering 36 (8), 962-977, 2021
2442021
A deep learning solution approach for high-dimensional random differential equations
MA Nabian, H Meidani
Probabilistic Engineering Mechanics 57, 14-25, 2019
161*2019
Deep Learning for Accelerated Seismic Reliability Analysis of Transportation Networks
MA Nabian, H Meidani
Computer‐Aided Civil and Infrastructure Engineering 33 (6), 443-458, 2018
1592018
Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory
X Wu, T Kozlowski, H Meidani, K Shirvan
Nuclear Engineering and Design 335, 339-355, 2018
1292018
Physics-driven regularization of deep neural networks for enhanced engineering design and analysis
MA Nabian, H Meidani
Journal of Computing and Information Science in Engineering 20 (1), 011006, 2020
110*2020
Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data
X Wu, T Kozlowski, H Meidani
Reliability Engineering & System Safety 169, 422-436, 2018
782018
Gradient based design optimization under uncertainty via stochastic expansion methods
V Keshavarzzadeh, H Meidani, DA Tortorelli
Computer Methods in Applied Mechanics and Engineering 306, 47-76, 2016
722016
Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE
X Wu, T Kozlowski, H Meidani, K Shirvan
Nuclear Engineering and Design 335, 417-431, 2018
652018
Predicting Near-Term Train Schedule Performance and Delay Using Bi-Level Random Forests
MA Nabian, N Alemazkoor, H Meidani
Transportation Research Record 2673 (5), 564-573, 2019
522019
Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model
X Wu, T Mui, G Hu, H Meidani, T Kozlowski
Nuclear Engineering and Design 319, 185-200, 2017
402017
Wavelet approximation of earthquake strong ground motion-goodness of fit for a database in terms of predicting nonlinear structural response
MI Todorovska, H Meidani, MD Trifunac
Soil Dynamics and Earthquake Engineering 29 (4), 742-751, 2009
372009
Divide and conquer: An incremental sparsity promoting compressive sampling approach for polynomial chaos expansions
N Alemazkoor, H Meidani
Computer Methods in Applied Mechanics and Engineering 318, 937-956, 2017
342017
PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic differential equations
W Zhong, H Meidani
Computer Methods in Applied Mechanics and Engineering 403, 115664, 2023
322023
Multiscale Markov models with random transitions for energy demand management
H Meidani, R Ghanem
Energy and Buildings 61, 267-274, 2013
312013
A near-optimal sampling strategy for sparse recovery of polynomial chaos expansions
N Alemazkoor, H Meidani
Journal of Computational Physics 371, 137-151, 2018
292018
Survival analysis at multiple scales for the modeling of track geometry deterioration
N Alemazkoor, CJ Ruppert, H Meidani
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of …, 2018
272018
Random Markov decision processes for sustainable infrastructure systems
H Meidani, R Ghanem
Structure and Infrastructure Engineering 11 (5), 655-667, 2015
262015
IGANI: Iterative Generative Adversarial Networks for Imputation With Application to Traffic Data
A Kazemi, H Meidani
IEEE Access 9, 112966-112977, 2021
25*2021
Physics-Informed Neural Networks for System Identification of Structural Systems with a Multiphysics Damping Model
T Liu, H Meidani
Journal of Engineering Mechanics 149 (10), 04023079, 2023
182023
GNN-based physics solver for time-independent PDEs
RJ Gladstone, H Rahmani, V Suryakumar, H Meidani, M D'Elia, A Zareei
arXiv preprint arXiv:2303.15681, 2023
182023
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–20