Παρακολούθηση
Hüseyin Budak
Hüseyin Budak
Associate Professor, Department of Mathematics, Düzce University
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα duzce.edu.tr - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Generalized Ostrowski type inequalities for local fractional integrals
M Sarikaya, H Budak
Proceedings of the American Mathematical Society 145 (4), 1527-1538, 2017
1802017
Fractional Hermite-Hadamard-type inequalities for interval-valued functions
H Budak, T Tunç, M Sarikaya
Proceedings of the American Mathematical Society, 2020
1302020
Simpson and Newton type inequalities for convex functions via newly defined quantum integrals
H Budak, S Erden, MA Ali
Mathematical Methods in the Applied Sciences 44 (1), 378-390, 2021
1212021
Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions
H Budak, MA Ali, M Tarhanaci
Journal of Optimization Theory and Applications 186, 899-910, 2020
1192020
Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
MA Ali, H Budak, Z Zhang, H Yildirim
Mathematical Methods in the Applied Sciences 44 (6), 4515-4540, 2021
922021
New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions
MA Ali, M Abbas, H Budak, P Agarwal, G Murtaza, YM Chu
Advances in Difference Equations 2021, 1-21, 2021
912021
Hermite–Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals
D Zhao, MA Ali, A Kashuri, H Budak, MZ Sarikaya
Journal of Inequalities and Applications 2020, 1-38, 2020
902020
Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second -derivatives
MA Ali, H Budak, M Abbas, YM Chu
Advances in Difference Equations 2021 (1), 7, 2021
802021
On generalized some integral inequalities for local fractional integrals
MZ Sarikaya, T Tunc, H Budak
Applied Mathematics and Computation 276, 316-323, 2016
702016
Generalized Hermite-Hadamard type integral inequalities for fractional integrals
MZ Sarikaya, H Budak
Filomat 30 (5), 1315-1326, 2016
672016
New version of fractional Simpson type inequalities for twice differentiable functions
F Hezenci, H Budak, H Kara
Advances in Difference Equations 2021, 1-10, 2021
662021
Some trapezoid and midpoint type inequalities for newly defined quantum integrals
H Budak
Proyecciones (Antofagasta) 40 (1), 199-215, 2021
652021
Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables
MA Ali, YM Chu, H Budak, A Akkurt, H Yıldırım, MA Zahid
Advances in Difference Equations 2021, 1-26, 2021
642021
Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
MA Ali, H Budak, A Akkurt, YM Chu
Open Mathematics 19 (1), 440-449, 2021
632021
New inequalities of Opial type for conformable fractional integrals
MZ Sarikaya, H BUDAK
Turkish Journal of Mathematics 41 (5), 1164-1173, 2017
572017
On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals
H Budak, F Hezenci, H Kara
Mathematical Methods in the Applied Sciences 44 (17), 12522-12536, 2021
552021
On new inequalities of Simpson’s type for generalized convex functions
MZ Sarıkaya, H Budak, S Erden
Korean J. Math 27 (2), 277-293, 2019
552019
Hermite-Hadamard's inequalities for conformable fractional integrals
MZ Sarıkaya, A Akkurt, H Budak, ME Yıldırım, H Yıldırım
An International Journal of Optimization and Control: Theories …, 2019
502019
On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators
F Usta, H Budak, MZ Sarıkaya, E Set
Filomat 32 (6), 2018
492018
Hermite‐Hadamard‐type inequalities for interval‐valued coordinated convex functions involving generalized fractional integrals
H Kara, MA Ali, H Budak
Mathematical Methods in the Applied Sciences 44 (1), 104-123, 2021
482021
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–20