Folgen
Bihan Wen
Bihan Wen
Nanyang Assistant Professor, Nanyang Technological University
Bestätigte E-Mail-Adresse bei ntu.edu.sg - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Non-Local Recurrent Network for Image Restoration
D Liu, B Wen, Y Fan, CC Loy, TS Huang
Neural Information Processing Systems (NeurIPS), 2018, 1673-1682, 2018
7242018
Recent Advances in Adversarial Training for Adversarial Robustness
T Bai, J Luo, J Zhao, B Wen, Q Wang
International Joint Conference on Artificial Intelligence (IJCAI), 4312-4321, 2021
4982021
COVERAGE—A Novel Database For Copy-Move Forgery Detection
B Wen, Y Zhu, R Subramanian, TT Ng, X Shen, S Winkler
IEEE International Conference on Image Processing (ICIP), 2016, 161-165, 2016
3782016
Robust single image super-resolution via deep networks with sparse prior
D Liu, Z Wang, B Wen, J Yang, W Han, TS Huang
IEEE Transactions on Image Processing (TIP) 25 (7), 3194-3207, 2016
3012016
When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach
D Liu, B Wen, X Liu, Z Wang, TS Huang
International Joint Conference on Artificial Intelligence (IJCAI), 842-848, 2018
2492018
Structured overcomplete sparsifying transform learning with convergence guarantees and applications
B Wen, S Ravishankar, Y Bresler
International Journal of Computer Vision (IJCV) 114 (2-3), 137-167, 2015
1782015
Connecting image denoising and high-level vision tasks via deep learning
D Liu, B Wen, J Jiao, X Liu, Z Wang, TS Huang
IEEE Transactions on Image Processing (TIP) 29, 3695-3706, 2020
1712020
Hyperservice: Interoperability and programmability across heterogeneous blockchains
Z Liu, Y Xiang, J Shi, P Gao, H Wang, X Xiao, B Wen, YC Hu
ACM SIGSAC Conference on Computer and Communications Security (CCS), 549-566, 2019
1412019
Denoising diffusion models for plug-and-play image restoration
Y Zhu, K Zhang, J Liang, J Cao, B Wen, R Timofte, L Van Gool
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
1252023
Image Restoration via Simultaneous Nonlocal Self-Similarity Priors
Z Zha, X Yuan, J Zhou, C Zhu, B Wen
IEEE Transactions on Image Processing (TIP) 29, 8561 - 8576, 2020
1212020
Online sparsifying transform learning—Part I: Algorithms
S Ravishankar, B Wen, Y Bresler
IEEE Journal of Selected Topics in Sig. Proc. (JSTSP) 9 (4), 625-636, 2015
1142015
A Benchmark for Sparse Coding: When Group Sparsity Meets Rank Minimization
Z Zha, X Yuan, B Wen, J Zhou, J Zhang, C Zhu
IEEE transactions on image processing (TIP) 29, 5094 - 5109, 2020
1052020
From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration
Z Zha, X Yuan, B Wen, J Zhou, J Zhang, C Zhu
IEEE Transactions on Image Processing (TIP) 29, 3254 - 3269, 2019
1012019
Group Sparsity Residual Constraint with Non-Local Priors for Image Restoration
Z Zha, X Yuan, B Wen, J Zhou, C Zhu
IEEE transactions on image processing (TIP) 29, 8960 - 8975, 2020
982020
Make Web3. 0 Connected
Z Liu, Y Xiang, J Shi, P Gao, H Wang, X Xiao, B Wen, Q Li, YC Hu
IEEE Transactions on Dependable and Secure Computing (TDSC), 2021
972021
Image Restoration Using Joint Patch-Group-Based Sparse Representation
Z Zha, X Yuan, B Wen, J Zhang, J Zhou, C Zhu
IEEE Transactions on Image Processing (TIP) 29, 7735-7750, 2020
942020
Ground-based image analysis: A tutorial on machine-learning techniques and applications
S Dev, B Wen, YH Lee, S Winkler
IEEE Geoscience and Remote Sensing Magazine (GRSM) 4 (2), 79-93, 2016
91*2016
Shadowdiffusion: When degradation prior meets diffusion model for shadow removal
L Guo, C Wang, W Yang, S Huang, Y Wang, H Pfister, B Wen
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
872023
Image Restoration Via Reconciliation of Group Sparsity and Low-Rank Models
Z Zha, B Wen, X Yuan, J Zhou, C Zhu
IEEE Transactions on Image Processing (TIP) 30, 5223-5238, 2021
802021
Removing Backdoor-based Watermarks in Neural Networks With Limited Data
X Liu, F Li, B Wen, Q Li
International Conference on Pattern Recognition (ICPR), 10149-10156, 2021
692021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20