Folgen
Yu-An Huang (黄裕安)
Yu-An Huang (黄裕安)
Bestätigte E-Mail-Adresse bei nwpu.edu.cn
Titel
Zitiert von
Zitiert von
Jahr
A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases
X Chen, YA Huang, ZH You, GY Yan, XS Wang
Bioinformatics 33 (5), 733-739, 2017
2342017
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
X Chen, CC Yan, X Zhang, ZH You, YA Huang, GY Yan
Oncotarget 7 (40), 65257, 2016
2252016
Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding
YA Huang, ZH You, X Chen, K Chan, X Luo
BMC bioinformatics 17, 1-11, 2016
1582016
A survey on computational models for predicting protein–protein interactions
L Hu, X Wang, YA Huang, P Hu, ZH You
Briefings in bioinformatics 22 (5), bbab036, 2021
1322021
ILNCSIM: improved lncRNA functional similarity calculation model
YA Huang, X Chen, ZH You, DS Huang, KCC Chan
Oncotarget 7 (18), 25902, 2016
1272016
An efficient approach based on multi-sources information to predict circRNA–disease associations using deep convolutional neural network
L Wang, ZH You, YA Huang, DS Huang, KCC Chan
Bioinformatics 36 (13), 4038-4046, 2020
1232020
Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein‐Protein Interactions from Protein Sequence
YA Huang, ZH You, X Gao, L Wong, L Wang
BioMed research international 2015 (1), 902198, 2015
1232015
GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm
L Wang, ZH You, YM Li, K Zheng, YA Huang
PLOS Computational Biology 16 (5), e1007568, 2020
1142020
Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling
YA Huang, KCC Chan, ZH You
Bioinformatics 34 (5), 812-819, 2018
1072018
FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model
X Chen, YA Huang, XS Wang, ZH You, KCC Chan
Oncotarget 7 (29), 45948, 2016
1042016
Graph convolution for predicting associations between miRNA and drug resistance
Y Huang, P Hu, KCC Chan, ZH You
Bioinformatics 36 (3), 851-858, 2020
992020
Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model
YA Huang, ZH You, X Chen, ZA Huang, S Zhang, GY Yan
Journal of translational medicine 15, 1-11, 2017
962017
A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences
YA Huang, ZH You, X Chen
Current Protein and Peptide Science 19 (5), 468-478, 2018
912018
Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor
L Wong, ZH You, S Li, YA Huang, G Liu
Advanced Intelligent Computing Theories and Applications: 11th International …, 2015
832015
iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation
K Zheng, ZH You, JQ Li, L Wang, ZH Guo, YA Huang
PLoS Computational Biology 16 (5), e1007872, 2020
732020
IMS-CDA: prediction of CircRNA-disease associations from the integration of multisource similarity information with deep stacked autoencoder model
L Wang, ZH You, JQ Li, YA Huang
IEEE transactions on cybernetics 51 (11), 5522-5531, 2020
622020
Plant species recognition methods using leaf image: Overview
S Zhang, W Huang, Y Huang, C Zhang
Neurocomputing 408, 246-272, 2020
602020
Detection of interactions between proteins through rotation forest and local phase quantization descriptors
L Wong, ZH You, Z Ming, J Li, X Chen, YA Huang
International journal of molecular sciences 17 (1), 21, 2015
522015
SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network
HJ Jiang, YA Huang, ZH You
Scientific reports 10 (1), 4972, 2020
512020
Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder
YA Huang, ZA Huang, ZH You, Z Zhu, WZ Huang, JX Guo, CQ Yu
Frontiers in genetics 10, 758, 2019
502019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20