Folgen
Ge Li (Bruce)
Titel
Zitiert von
Zitiert von
Jahr
Prodmp: A unified perspective on dynamic and probabilistic movement primitives
G Li, Z Jin, M Volpp, F Otto, R Lioutikov, G Neumann
IEEE Robotics and Automation Letters 8 (4), 2325-2332, 2023
442023
Specializing versatile skill libraries using local mixture of experts
O Celik, D Zhou, G Li, P Becker, G Neumann
Conference on Robot Learning, 1423-1433, 2022
372022
Evaluation of CFD predictions using different turbulence models on a film cooled guide vane under experimental conditions
Q Zhang, H Xu, J Wang, G Li, L Wang, X Wu, S Ma
Turbo Expo: Power for Land, Sea, and Air 56710, V05AT10A010, 2015
152015
MaIL: Improving Imitation Learning with Mamba
X Jia, Q Wang, A Donat, B Xing, G Li, H Zhou, O Celik, D Blessing, ...
arXiv preprint arXiv:2406.08234, 2024
72024
Open the Black Box: Step-based Policy Updates for Temporally-Correlated Episodic Reinforcement Learning
G Li, H Zhou, D Roth, S Thilges, F Otto, R Lioutikov, G Neumann
The Twelfth International Conference on Learning Representations, 2024
62024
Mp3: Movement primitive-based (re-) planning policy
F Otto, H Zhou, O Celik, G Li, R Lioutikov, G Neumann
arXiv preprint arXiv:2306.12729, 2023
62023
Predicting adiabatic film effectiveness of a turbine vane by two-equation turbulence models
P Prapamonthon, H Xu, J Wang, G Li
Turbo Expo: Power for Land, Sea, and Air 56727, V05BT12A019, 2015
42015
MaIL: Improving Imitation Learning with Selective State Space Models
X Jia, Q Wang, A Donat, B Xing, G Li, H Zhou, O Celik, D Blessing, ...
8th Annual Conference on Robot Learning, 2024
22024
Variational Distillation of Diffusion Policies into Mixture of Experts
H Zhou, D Blessing, G Li, O Celik, X Jia, G Neumann, R Lioutikov
arXiv preprint arXiv:2406.12538, 2024
12024
An encoder-decoder architecture for smooth motion generation
Z Lončarević, G Li, G Neumann, A Gams
International Conference on Robotics in Alpe-Adria Danube Region, 358-366, 2023
12023
BMP: Bridging the Gap between B-Spline and Movement Primitives
W Liao, G Li, H Zhou, R Lioutikov, G Neumann
arXiv preprint arXiv:2411.10336, 2024
2024
TOP-ERL: Transformer-based Off-Policy Episodic Reinforcement Learning
G Li, D Tian, H Zhou, X Jiang, R Lioutikov, G Neumann
arXiv preprint arXiv:2410.09536, 2024
2024
Latent Space Exploration and Trajectory Space Update in Temporally-Correlated Episodic Reinforcement Learning
G Li, H Zhou, D Roth, S Thilges, F Otto, R Lioutikov, G Neumann
ICRA 2024 Workshop {\textemdash} Back to the Future: Robot Learning Going …, 0
MP3: Movement Primitive-Based (Re-) Planning Policy
H Zhou, F Otto, O Celik, G Li, R Lioutikov, G Neumann
CoRL 2023 Workshop on Learning Effective Abstractions for Planning (LEAP), 0
Solving Real-World Robot Manip-ulation Tasks with Deep Rein-forcement Learning
TTPR Lioutikov, H Zhou, G Li
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–15