Folgen
Matthew Zahr
Titel
Zitiert von
Zitiert von
Jahr
Nonlinear model order reduction based on local reduced‐order bases
D Amsallem, MJ Zahr, C Farhat
International Journal for Numerical Methods in Engineering 92 (10), 891-916, 2012
5442012
Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
H Gao, MJ Zahr, JX Wang
Computer Methods in Applied Mechanics and Engineering 390, 114502, 2022
2092022
Design optimization using hyper-reduced-order models
D Amsallem, M Zahr, Y Choi, C Farhat
Structural and Multidisciplinary Optimization 51 (4), 919-940, 2015
2022015
Progressive construction of a parametric reduced‐order model for PDE‐constrained optimization
MJ Zahr, C Farhat
International Journal for Numerical Methods in Engineering 102 (5), 1111-1135, 2015
1652015
Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction
D Amsallem, MJ Zahr, K Washabaugh
Advances in Computational Mathematics 41, 1187-1230, 2015
1012015
Nonlinear model reduction for CFD problems using local reduced-order bases
K Washabaugh, D Amsallem, M Zahr, C Farhat
42nd AIAA Fluid Dynamics Conference and Exhibit, 2686, 2012
962012
An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions
MJ Zahr, PO Persson
Journal of Computational Physics 365, 105-134, 2018
762018
Implicit shock tracking using an optimization-based high-order discontinuous Galerkin method
MJ Zahr, A Shi, PO Persson
Journal of Computational Physics 410, 109385, 2020
702020
A multilevel projection‐based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics
MJ Zahr, P Avery, C Farhat
International Journal for Numerical Methods in Engineering 112 (8), 855-881, 2017
682017
PDCO: Primal-dual interior method for convex objectives
MA Saunders, B Kim, C Maes, S Akle, M Zahr
Software available at http://www. stanford. edu/group/SOL/software/pdco. html, 2002
612002
On the use of discrete nonlinear reduced-order models for the prediction of steady-state flows past parametrically deformed complex geometries
KM Washabaugh, MJ Zahr, C Farhat
54th AIAA Aerospace Sciences Meeting, 1814, 2016
592016
Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning
H Gao, JX Wang, MJ Zahr
Physica D: Nonlinear Phenomena 412, 132614, 2020
542020
Blood flow imaging by optimal matching of computational fluid dynamics to 4D‐flow data
J Töger, MJ Zahr, N Aristokleous, K Markenroth Bloch, M Carlsson, ...
Magnetic resonance in medicine 84 (4), 2231-2245, 2020
472020
An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids
MJ Zahr, KT Carlberg, DP Kouri
SIAM/ASA Journal on Uncertainty Quantification 7 (3), 877-912, 2019
422019
Model reduction of convection-dominated partial differential equations via optimization-based implicit feature tracking
MA Mirhoseini, MJ Zahr
Journal of Computational Physics 473, 111739, 2023
412023
A robust, high-order implicit shock tracking method for simulation of complex, high-speed flows
T Huang, MJ Zahr
Journal of Computational Physics 454, 110981, 2022
342022
The GNAT nonlinear model reduction method and its application to fluid dynamics problems
K Carlberg, D Amsallem, P Avery, M Zahr, C Farhat
6th AIAA Theoretical Fluid Mechanics Conference, 3112, 2011
312011
High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit–explicit Runge–Kutta schemes
DZ Huang, PO Persson, MJ Zahr
Computer Methods in Applied Mechanics and Engineering 346, 674-706, 2019
272019
An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems
MJ Zahr, PO Persson
Journal of Computational Physics 326, 516-543, 2016
272016
A globally convergent method to accelerate topology optimization using on-the-fly model reduction
M Yano, T Huang, MJ Zahr
Computer Methods in Applied Mechanics and Engineering 375, 113635, 2021
262021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20