Folgen
José Luis Aznarte
José Luis Aznarte
Associate Professor. Artificial Intelligence Department, UNED.
Bestätigte E-Mail-Adresse bei dia.uned.es - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Shapley additive explanations for NO2 forecasting
MV García, JL Aznarte
Ecological Informatics 56, 101039, 2020
2352020
Predicting air quality with deep learning LSTM: Towards comprehensive models
R Navares, JL Aznarte
Ecological Informatics 55, 101019, 2020
1412020
Dynamic line rating using numerical weather predictions and machine learning: A case study
JL Aznarte, N Siebert
IEEE Transactions on Power Delivery 32 (1), 335-343, 2016
1382016
Empirical study of feature selection methods based on individual feature evaluation for classification problems
A Arauzo-Azofra, JL Aznarte, JM Benítez
Expert systems with applications 38 (7), 8170-8177, 2011
1352011
Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models
JL Aznarte, D Nieto-Lugilde, C de Linares Fernández, CD de la Guardia, ...
Expert Systems with Applications 32 (4), 1218-1225, 2007
1292007
Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks
V Sevillano, JL Aznarte
PloS one 13 (9), e0201807, 2018
1012018
Precise automatic classification of 46 different pollen types with convolutional neural networks
V Sevillano, K Holt, JL Aznarte
Plos one 15 (6), e0229751, 2020
902020
Photovoltaic Forecasting: A state of the art
B Espinar, JL Aznarte, R Girard, AM Moussa, G Kariniotakis
5th European PV-hybrid and mini-grid conference, Pages 250-255-ISBN 978-3 …, 2010
792010
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
K Sherratt, H Gruson, H Johnson, R Niehus, B Prasse, F Sandmann, ...
Elife 12, e81916, 2023
592023
A spatio-temporal attention-based spot-forecasting framework for urban traffic prediction
R de Medrano, JL Aznarte
Applied Soft Computing 96, 106615, 2020
592020
Smooth transition autoregressive models and fuzzy rule-based systems: Functional equivalence and consequences
JL Aznarte, JM Benítez, JL Castro
Fuzzy sets and systems 158 (24), 2734-2745, 2007
442007
Financial time series forecasting with a bio-inspired fuzzy model
JL Aznarte, J Alcalá-Fdez, A Arauzo-Azofra, JM Benítez
Expert Systems with Applications 39 (16), 12302-12309, 2012
422012
Comparing ARIMA and computational intelligence methods to forecast daily hospital admissions due to circulatory and respiratory causes in Madrid
R Navares, J Díaz, C Linares, JL Aznarte
Stochastic environmental research and risk assessment 32, 2849-2859, 2018
412018
Earthquake magnitude prediction based on artificial neural networks: A survey
E Florido, JL Aznarte, A Morales-Esteban, F Martínez-Álvarez
Croatian Operational Research Review, 159-169, 2016
352016
Probabilistic forecasting for extreme NO2 pollution episodes
JL Aznarte
Environmental Pollution 229, 321-328, 2017
322017
Comparing quantile regression methods for probabilistic forecasting of NO2 pollution levels
SP Vasseur, JL Aznarte
Scientific Reports 11 (1), 11592, 2021
262021
Deep learning improves taphonomic resolution: high accuracy in differentiating tooth marks made by lions and jaguars
B Jiménez-García, J Aznarte, N Abellán, E Baquedano, ...
Journal of the Royal Society Interface 17 (168), 20200446, 2020
252020
Time series modeling and forecasting using memetic algorithms for regime-switching models
C Bergmeir, I Triguero, D Molina, JL Aznarte, JM Benitez
IEEE transactions on neural networks and learning systems 23 (11), 1841-1847, 2012
252012
Deep learning classification of tooth scores made by different carnivores: achieving high accuracy when comparing African carnivore taxa and testing the hominin shift in the …
N Abellán, B Jiménez-García, J Aznarte, E Baquedano, ...
Archaeological and Anthropological Sciences 13, 1-14, 2021
242021
Equivalences between neural-autoregressive time series models and fuzzy systems
JL Aznarte, JM Benítez
IEEE transactions on neural networks 21 (9), 1434-1444, 2010
222010
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20