Folgen
Max Sobol Mark
Max Sobol Mark
Undergraduate Researcher, Stanford University
Bestätigte E-Mail-Adresse bei stanford.edu
Titel
Zitiert von
Zitiert von
Jahr
Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning
M Nakamoto, S Zhai, A Singh, M Sobol Mark, Y Ma, C Finn, A Kumar, ...
Advances in Neural Information Processing Systems 36, 2024
892024
Unsupervised learning from video with deep neural embeddings
C Zhuang, T She, A Andonian, MS Mark, D Yamins
Proceedings of the ieee/cvf conference on computer vision and pattern …, 2020
742020
Robot fine-tuning made easy: Pre-training rewards and policies for autonomous real-world reinforcement learning
J Yang, MS Mark, B Vu, A Sharma, J Bohg, C Finn
2024 IEEE International Conference on Robotics and Automation (ICRA), 4804-4811, 2024
152024
Fine-tuning offline policies with optimistic action selection
MS Mark, A Ghadirzadeh, X Chen, C Finn
Deep Reinforcement Learning Workshop NeurIPS 2022, 2022
152022
Offline retraining for online rl: Decoupled policy learning to mitigate exploration bias
MS Mark, A Sharma, F Tajwar, R Rafailov, S Levine, C Finn
arXiv preprint arXiv:2310.08558, 2023
32023
Offline RL for Online RL: Decoupled Policy Learning for Mitigating Exploration Bias
MS Mark, A Sharma, F Tajwar, R Rafailov, S Levine, C Finn
1
Offline Retraining for Online RL: Decoupled Policy Learning to Mitigate Exploration Bias
M Sobol Mark, A Sharma, F Tajwar, R Rafailov, S Levine, C Finn
arXiv e-prints, arXiv: 2310.08558, 2023
2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–7