Artikel mit Open-Access-Mandaten - Cordelia SchmidWeitere Informationen
Verfügbar: 108
The visual object tracking vot2015 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, L Cehovin, G Fernandez, ...
Proceedings of the IEEE international conference on computer vision …, 2015
Mandate: Swedish Research Council
Segmenter: Transformer for Semantic Segmentation
R Strudel, R Garcia, I Laptev, C Schmid
ICCV 2021; arXiv preprint arXiv:2105.05633, 2021
Mandate: Agence Nationale de la Recherche
End-to-End Incremental Learning
FM Castro, M Marín-Jiménez, N Guil, C Schmid, K Alahari
ECCV 2018; arXiv preprint arXiv:1807.09536, 2018
Mandate: Department of Science & Technology, India, European Commission
Long-term temporal convolutions for action recognition
G Varol, I Laptev, C Schmid
IEEE PAMI 2017, arXiv preprint arXiv:1604.04494, 2016
Mandate: European Commission
Towards understanding action recognition
H Jhuang, J Gall, S Zuffi, C Schmid, MJ Black
Proceedings of the IEEE international conference on computer vision, 3192-3199, 2013
Mandate: Deutsche Forschungsgemeinschaft, European Commission
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
J Revaud, P Weinzaepfel, Z Harchaoui, C Schmid
CVPR 2015, 2015
Mandate: European Commission
P-cnn: Pose-based cnn features for action recognition
G Chéron, I Laptev, C Schmid
Proceedings of the IEEE international conference on computer vision, 3218-3226, 2015
Mandate: European Commission
Multi-modal Transformer for Video Retrieval
V Gabeur, C Sun, K Alahari, C Schmid
ECCV 2020; arXiv preprint arXiv:2007.10639, 2020
Mandate: Agence Nationale de la Recherche
Category-specific video summarization
D Potapov, M Douze, Z Harchaoui, C Schmid
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland …, 2014
Mandate: European Commission
Incremental learning of object detectors without catastrophic forgetting
K Shmelkov, C Schmid, K Alahari
ICCV 2017, arXiv:1708.06977, 2017
Mandate: European Commission
Learning joint reconstruction of hands and manipulated objects
Y Hasson, G Varol, D Tzionas, I Kalevatykh, MJ Black, I Laptev, C Schmid
CVPR 2019; arXiv preprint arXiv:1904.05767, 2019
Mandate: Natural Sciences and Engineering Research Council of Canada, Deutsche …
Learning object class detectors from weakly annotated video
A Prest, C Leistner, J Civera, C Schmid, V Ferrari
2012 IEEE Conference on computer vision and pattern recognition, 3282-3289, 2012
Mandate: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Weakly supervised object localization with multi-fold multiple instance learning
RG Cinbis, J Verbeek, C Schmid
IEEE transactions on pattern analysis and machine intelligence 39 (1), 189-203, 2016
Mandate: European Commission
Convolutional kernel networks
J Mairal, P Koniusz, Z Harchaoui, C Schmid
Advances in neural information processing systems 27, 2014
Mandate: European Commission
Multi-region two-stream R-CNN for action detection
X Peng, C Schmid
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
Mandate: National Natural Science Foundation of China, European Commission
How good is my GAN?
K Shmelkov, C Schmid, K Alahari
ECCV 2018; arXiv preprint arXiv:1807.09499, 2018
Mandate: Department of Science & Technology, India, European Commission
From images to shape models for object detection
V Ferrari, F Jurie, C Schmid
International journal of computer vision 87 (3), 284-303, 2010
Mandate: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Learning Video Object Segmentation with Visual Memory
P Tokmakov, K Alahari, C Schmid
ICCV 2017, arXiv:1704.05737, 2017
Mandate: European Commission
LCR-Net: Localization-Classification-Regression for Human Pose
G Rogez, P Weinzaepfel, C Schmid
CVPR 2017, 2017
Mandate: European Commission
A robust and efficient video representation for action recognition
H Wang, D Oneata, J Verbeek, C Schmid
International Journal of Computer Vision 119 (3), 219-238, 2015
Mandate: European Commission
Angaben zur Publikation und Finanzierung werden automatisch von einem Computerprogramm ermittelt