Folgen
Pobithra Das
Pobithra Das
Student, Leading university
Bestätigte E-Mail-Adresse bei lus.ac.bd
Titel
Zitiert von
Zitiert von
Jahr
Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with shapley additive explanations
P Das, A Kashem
Case Studies in Construction Materials 20, e02723, 2024
402024
Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses
A Kashem, R Karim, SC Malo, P Das, SD Datta, M Alharthai
Case Studies in Construction Materials 20, e02991, 2024
312024
Compressive strength prediction of high-strength concrete using hybrid machine learning approaches by incorporating SHAP analysis
A Kashem, P Das
Asian Journal of Civil Engineering 24 (8), 3243-3263, 2023
292023
Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses
A Kashem, R Karim, P Das, SD Datta, M Alharthai
Case Studies in Construction Materials 20, e03030, 2024
252024
Prediction of high-performance concrete compressive strength using deep learning techniques
N Islam, A Kashem, P Das, MN Ali, S Paul
Asian Journal of Civil Engineering 25 (1), 327-341, 2024
212024
Sustainable of rice husk ash concrete compressive strength prediction utilizing artificial intelligence techniques
S Paul, P Das, A Kashem, N Islam
Asian Journal of Civil Engineering 25 (2), 1349-1364, 2024
172024
A comparative study of machine learning models for construction costs prediction with natural gradient boosting algorithm and SHAP analysis
P Das, A Kashem, I Hasan, M Islam
Asian Journal of Civil Engineering, 1-16, 2024
132024
Prediction of compressive strength of high-performance concrete using optimization machine learning approaches with SHAP analysis
MM Islam, P Das, MM Rahman, F Naz, A Kashem, MH Nishat, ...
Journal of Building Pathology and Rehabilitation 9 (2), 1-20, 2024
52024
Alkali-activated binder concrete strength prediction using hybrid-deep learning along with shapely additive explanations and uncertainty analysis
P Das, A Kashem, M Islam, A Ahmed, MA Haque, M Khan
Construction and Building Materials 435, 136711, 2024
32024
A comparative study of ensemble machine learning models for compressive strength prediction in recycled aggregate concrete and parametric analysis
P Das, A Kashem, JU Rahat, R Karim
Multiscale and Multidisciplinary Modeling, Experiments and Design, 1-26, 2024
22024
Hybrid deep learning models for multi-ahead river water level forecasting
A Kashem, P Das, MM Hasan, R Karim, NM Nasher
Earth Science Informatics, 1-17, 2024
12024
Metaheuristic-based machine learning approaches of compressive strength forecasting of steel fiber reinforced concrete with SHapley Additive exPlanations
A Kashem, A Anzer, R Jagirdar, MS Sojib, F Farooq, P Das
Multiscale and Multidisciplinary Modeling, Experiments and Design 8 (1), 61, 2025
2025
Water proofing performance assessment of hydrophobic agent-based Portland cement concrete: A multi-dimensional experiment approach
P Das, MA Haque, M Islam, A Chakraborty
Journal of Building Engineering 96, 110600, 2024
2024
Comparative analysis of advanced deep learning models for predicting evapotranspiration based on meteorological data in bangladesh
S Paul, SZ Farzana, S Das, P Das, A Kashem
Environmental Science and Pollution Research, 1-24, 2024
2024
Deep Learning Models for Reference Evapotranspiration Prediction in Bangladesh
A Kashem, P Das, U Baishnab
MDPI, 2024
2024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–15