Monte Carlo variational auto-encoders A Thin, N Kotelevskii, A Doucet, A Durmus, E Moulines, M Panov International Conference on Machine Learning, 10247-10257, 2021 | 43 | 2021 |
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform A Thin, Y Janati, S Le Corff, C Ollion, A Doucet, A Durmus, E Moulines, ... | 23* | 2021 |
First modeling of strongly radiating WEST plasmas with SOLEDGE-EIRENE G Ciraolo, A Thin, H Bufferand, J Bucalossi, N Fedorczak, JP Gunn, ... Nuclear Materials and Energy 20, 100685, 2019 | 17 | 2019 |
MetFlow: a new efficient method for bridging the gap between Markov chain Monte Carlo and variational inference A Thin, N Kotelevskii, JS Denain, L Grinsztajn, A Durmus, M Panov, ... arXiv preprint arXiv:2002.12253, 2020 | 16 | 2020 |
Differentiable samplers for deep latent variable models A Doucet, E Moulines, A Thin Philosophical Transactions of the Royal Society A 381 (2247), 20220147, 2023 | 9 | 2023 |
Nonreversible MCMC from conditional invertible transforms: a complete recipe with convergence guarantees A Thin, N Kotelevskii, C Andrieu, A Durmus, E Moulines, M Panov arXiv preprint arXiv:2012.15550, 2020 | 6 | 2020 |
Br-snis: bias reduced self-normalized importance sampling G Cardoso, S Samsonov, A Thin, E Moulines, J Olsson Advances in Neural Information Processing Systems 35, 716-729, 2022 | 5 | 2022 |
Metropolized flow: from invertible flow to mcmc A Thin, N Kotelevskii, A Durmus, M Panov, E Moulines Proceedings of the ICML Workshop on Invertible Neural Networks, Normalizing …, 2020 | 3 | 2020 |
Ex2MCMC: Sampling through Exploration Exploitation E Lagutin, D Selikhanovych, A Thin, S Samsonov, A Naumov, ... stat, 2022 | 2 | 2022 |
A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis M Stojanova, P Arbelet, F Baudin, N Bouton, G Caria, L Pacini, N Proix, ... Biogeosciences 21 (18), 4229-4237, 2024 | | 2024 |
Nouvelles Méthodes Variationnelles pour l'inférence et l'apprentissage A Thin Institut polytechnique de Paris, 2022 | | 2022 |
Novel Variational Approaches to Inference and Learning A Thin Institut Polytechnique de Paris, 2022 | | 2022 |