Uni-mol: A universal 3d molecular representation learning framework G Zhou, Z Gao, Q Ding, H Zheng, H Xu, Z Wei, L Zhang, G Ke | 347 | 2023 |
Do deep learning methods really perform better in molecular conformation generation? G Zhou, Z Gao, Z Wei, H Zheng, G Ke arXiv preprint arXiv:2302.07061, 2023 | 17 | 2023 |
Uni-mol: A universal 3d molecular representation learning framework (2023) G Zhou, Z Gao, Q Ding, H Zheng, H Xu, Z Wei, L Zhang, G Ke URL https://openreview. net/forum, 0 | 11 | |
Bridging Machine Learning and Thermodynamics for Accurate pKa Prediction W Luo, G Zhou, Z Zhu, Y Yuan, G Ke, Z Wei, Z Gao, H Zheng JACS Au 4 (9), 3451-3465, 2024 | 7 | 2024 |
Predicting protein-ligand binding affinity via joint global-local interaction modeling Y Zhang, G Zhou, Z Wei, H Xu 2022 IEEE International Conference on Data Mining (ICDM), 1323-1328, 2022 | 7 | 2022 |
Uni-mol docking v2: Towards realistic and accurate binding pose prediction E Alcaide, Z Gao, G Ke, Y Li, L Zhang, H Zheng, G Zhou arXiv preprint arXiv:2405.11769, 2024 | 5 | 2024 |
Synergistic application of molecular docking and machine learning for improved binding pose Y Li, H Lin, H Yang, Y Yuan, R Zou, G Zhou, L Zhang, H Zheng National Science Open 3 (2), 20230058, 2024 | 3 | 2024 |
Synergistic Application of Molecular Docking and Machine Learning for Improved Protein-Ligand Binding Pose Prediction H Yang, H Lin, Y Yuan, Y Li, R Zou, G Zhou, L Zhang, H Zheng | 2 | 2023 |
S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search G Zhou, Z Wang, F Yu, G Ke, Z Wei, Z Gao The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024 | | 2024 |
Uni-pKa: An Accurate and Physically Consistent pKa Prediction through Protonation Ensemble Modeling H Zheng, W Luo, G Zhou, Z Zhu, Y Yuan, G Ke, Z Wei, Z Gao | | 2023 |
Uni-pKa: An Accurate and Physically Consistent pKa Prediction through Protonation Ensemble Modeling W Luo, G Zhou, Z Zhu, G Ke, Z Wei, Z Gao, H Zheng | | 2023 |
FGW-CLIP: Enhancing Enzyme Screening via Fused Gromov-Wasserstein Contrastive Learning G Zhou, F Yu, W Wang, Z Gao, G Ke, Z Wei, Z Wang | | |